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Abstract

Instruction set simulators (ISSs) play an important role in
embedded software development. Integrated in virtual plat-
forms, they enable coding, testing, and performance evalua-
tion without the need for physical platforms. However, sim-
ulations incur a performance penalty over native execution,
resulting in slow simulation speeds for complex applications.
We realize that in interpreter-based ISS - developers’ first
choice when detailed processor pipeline and cache simula-
tion are required — the simulator’s own instruction fetch
and decode stages substantially contribute to overall run-
time. We propose a novel simulator instruction fetch and
decode cache architecture: (a) We use instruction encodings
for cache indexing instead of the program counter, (b) we
introduce separate instruction fetch and decode caches in-
stead of a single, unified cache, and (c) we introduce a tiered
cache architecture, comprising private and global caches for
multicore guest architectures. We have implemented our
novel caching schemes in the commercial Synopsys ARC®
nSIM ISS that provides an instruction accurate processor
model for the Synopsys ARC processor families. We evalu-
ated our new simulator cache architecture using complex
real-world workloads and guest configurations with up to
128 simulated guest cores, where we demonstrate average
speed-ups of 1.31X over a state-of-the-art baseline scheme,
while requiring only 27% of the original cache memory.

1 Introduction

Instruction Set Simulators (ISSs) play a prominent role in
the development of embedded hardware and software [11],
much more so than in any other computing domain. They en-
able rapid prototyping of new instructions [18], developing
and debugging applications before hardware exists [2], and
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architectural exploration [15]. In particular, ISSs decouple
embedded software development from the availability of a
physical device.

There are a range of strategies that can be used to imple-
ment an ISS, the most basic being a simple interpreter [19],
and the more complex ones involving Dynamic Binary Trans-
lation (DBT) [13]. In general, interpreter-based ISSs cannot
achieve the performance of native execution, however they
still offer notable advantages that secure them a firm place
in the developers’ toolbox. Interpreters are relatively easy
to implement, making rapid development or modifications
of new or existing architectures feasible. More importantly,
since interpretation happens inline with the execution of
individual guest instructions, instrumentation, profiling, or
debugging of the guest code becomes straightforward. Step-
by-step interpreted execution enables interpreted ISSs to
interface with detailed pipeline or cache models [10, 17].

Interpreted ISSs with their simple fetch-decode-execute ex-
ecution strategy are faced with a fundamental performance
challenge: the repeated fetching and decoding of instruc-
tions contributes substantially to overall simulator execu-
tion time [6]. To tackle this, ISSs typically employ a decode
cache, to accelerate instruction decoding. Such caches are
typically indexed by the emulated PC, so that pre-decoded
instructions can be obtained quickly, and repetitive costs for
bit-level instruction decoding can be avoided after an initial
warm-up phase [23].

We observe that the commonly used PC-based caching
scheme for decoded instructions is far from optimal: (1) The
number of distinct PC values in a typical program is far
greater than the number of distinct instruction encodings,
leading to low cache utilization, and (2) as the number of
simulated guest cores increases, the memory footprint for
traditional decode caches also increases linearly, resulting in
poor scalability.

In this paper we revisit the instruction fetch and decode
cache architecture in ISSs, and introduce a strategy that com-
bines a number of novelties: we (a) use instruction encodings
for cache indexing instead of the PC for higher cache uti-
lization, (b) introduce separate instruction fetch and decode
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Figure 1. Encodings and PC distributions in gcc benchmark. The encoding space is significantly smaller than the PC space.

caches instead of the traditional unified cache, and (c) in-
troduce a tiered cache architecture comprising private and
global caches for use in simulation of multi-core guest archi-
tectures for greater scalability and increased efficiency.

Our evaluation, based on the commercial Synopsys ARC®
nSIM ISS extended with our novel fetch and decode cache ar-
chitecture, confirms that substantial gains in simulation per-
formance and memory efficiency can be achieved. For com-
plex, real-world workloads and industry-standard SPLASH-2
benchmarks average speed-ups of 1.31X, and up to 1.57X
over the state-of-the-art baseline scheme, can be delivered,
while operating on only 27% of the cache memory of the
reference scheme.

1.1 Motivating Example

Consider the gcc benchmark shown in Figure 1. The number
of distinct PC values encountered during the execution (the
PC space) is far greater than the number of distinct instruc-
tion encodings (the encoding space). This is because the same
few instructions are used repeatedly across multiple PCs.
In particular, out of more than 5 billion executed instruc-
tions, we count approximately 229,000 distinct PCs, while
only 54,000 distinct instruction encodings. Therefore, the PC
space is about 4Xx greater than the encoding space. Further-
more, we observe that a few encodings account for a large
proportion of the executed instructions (Figure 1b). In con-
trast, many more PC addresses are required to account for
the same proportion of the dynamic instruction workload.

These observations indicate that many instructions are
duplicated in the PC space, and thus we can design a more
efficient instruction storage scheme for the decode cache.
For example, using a fixed PC-indexed decode cache of the
most frequent 256 PC values results in a hit rate of 19.62%,
while using an encoding-indexed decode cache of the most
frequent 256 instruction encodings results in a hit rate of
53.01%. In fact, the encoding-indexed cache achieves a greater
hit rate vs. a 2x larger PC-indexed cache.

2 Decode Caching Schemes

Given these observations, we propose to remove decode
object duplication by reorganizing the decode cache to be
indexed by the raw instruction encoding, rather than the PC.

Whilst this strategy does eliminate decode object duplica-
tion, the cache can only be queried after a fetch operation has
been performed, and the raw instruction encoding is avail-
able. As the fetch stage contributes to a significant portion
of the interpreter execution pipeline, we introduce an addi-
tional PC-indexed fetch cache, which caches the result of the
fetch operation (i.e. the instruction encoding), and other PC-
specific information not encoded in the instruction’s binary
representation. Since the corresponding fetch cache entry is
relatively small, we tolerate cache entry duplication for the
benefit of improved overall performance.

2.1 The Indirect Scheme

We first introduce the Indirect scheme, where we store an
index value next to the raw encoding in each fetch cache
entry. If the lookup in the fetch cache hits, the index value is
used to directly access the corresponding decoded instruction
object without the need to perform a lookup in the decode
cache. Figure 2 shows how the flow of operations work in
this strategy: in the best case, a hit in the fetch cache results
in a pointer directly to the valid decoded instruction object.

Since multiple fetch entries can point to the same decode
entry, we have to introduce an invalidation mechanism in
case the corresponding decode entry is evicted. This effec-
tively defines an inclusive caching policy, where the decode
cache is inclusive of the fetch cache.

We opt for a lazy invalidation approach, where a validity
check is performed in the decode cache after hitting in the
fetch cache. This is effectively a tag check, where we compare
the raw encoding of the fetch entry with the raw encoding
of the decode entry (which is stored as part of the decoded
instruction object). The alternative is an eager invalidation
approach, which would be triggered when a decode object is
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after a fetch cache hit, an index field is used as a pointer offset to bypass the decode cache lookup completely, and directly

access the decode object.

evicted; however, this would require a full scan of the fetch
cache to identify entries that need to be invalidated.

2.2 The Exclusive Scheme

We also observe significant decode object duplication in multi-
core simulation. This duplication arises when private decode
caches are instantiated for each simulated core. In the case of
data parallel guest applications, the simulated cores execute
the same code and thus contain the same instructions in their
own private decode caches. In the case of task-parallel guest
applications, even though the simulated cores might not
execute the same code, they are still likely to share similar,
if not identical, instructions (in terms of raw instruction
encodings). Therefore, sharing decode objects among multiple
simulated cores can reduce redundancy.

In this section, we introduce the Exclusive caching scheme
suitable for multicore simulation that removes duplication
of decode objects between simulated cores. This is achieved
using a shared memory pool of decoded instruction objects,
with additional low-overhead synchronization mechanisms
to prevent data races.

Sharing decode objects between multiple cores raises the
possibility of concurrent modification, specifically when one
core replaces a decode entry in the shared cache while an-
other core has a pointer to the same entry in its private
fetch cache. Since the replacement can happen concurrently,
the invalidation mechanism from the Indirect scheme is not
enough to guarantee correct execution. To protect against
concurrent modifications, a lock must be acquired for each
decode entry before the corresponding decode object is used
in the execute stage.

We use a 1-byte spinlock to implement mutual exclusion.
This reduces the memory footprint of the synchronization
mechanism, as well as achieving the best performance rela-
tive to other synchronization options (e.g. a pthread mutex
takes up 40 bytes of memory, and in our experiments was
always slower than a spinlock, with up to 40% longer exe-
cution times). The outstanding performance of a spinlock is
due to the small size of the critical section, i.e. the execution
time of the execute stage is always shorter than the cost of
two context switches, required to service a sleeping lock.

Unfortunately, other than protecting against concurrent
modifications, the spinlock also forces mutual exclusion in
the case of executing the same instruction. Serializing the
execution of the same instruction becomes a bottleneck, es-
pecially for data-parallel applications with small workload
kernels. For example, a 16-core simulation with a workload
kernel of just sixteen distinct raw encodings is guaranteed
to have at least two cores executing the same instruction
encoding at any one time, and therefore needing to serialize,
resulting in an overall slowdown of the application.

2.3 The Mixed Scheme

To address this, and prevent multiple cores from having
to serialize their execution, we introduce a mixed private
and shared decode cache as shown in Figure 3. This Mixed
scheme builds on top of the Exclusive scheme by adding a
small core-private decode cache. All decode objects first start
in the shared cache. Then, if a core tries to acquire a lock
during future fetch cache hits, and the lock variable is already
acquired, the decode object is copied into the core’s private
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Figure 3. Cache organisation for the Mixed scheme. Private fetch entries reference either private or shared decode entries.
Shared decode pointers are indicated by a bit tag in the index field of each fetch entry.

decode cache. By creating a private copy of the decode object,
the core no longer needs to synchronize with others.

To suport this, the corresponding index in the fetch cache
entry has to be patched to indicate that the corresponding
decode object resides in the private cache. A shared decode
object is indicated by setting the most significant bit of the
2 byte index field. We ensure the cache sizes are never big
enough to require this bit, and thus we can use it for index/-
pointer tagging. After the entry index has been patched, all
future fetch cache hits can use the private decode object with-
out any synchronization. Note, replacements in the private
decode caches are still possible, therefore a validity check of
the entry (using the raw instruction encoding) is still required.

2.4 The Parallel Scheme

Fully concurrent access to shared decode objects, with a neg-
ligible amount of synchronization, can be achieved if we
design the system such that decode objects are never replaced
during instruction emulation—concurrently or otherwise.
Under this invariant, the validity check is no longer required,
so we can remove the raw instruction encoding from the

fetch cache entry. Furthermore, the lock variable in the de-
code cache entry can be removed, as no synchronization is
required. This arrangement is shown in Figure 4.

The shared decode cache is only modified in the case of a
compulsory miss. If any core tries to execute an instruction
not already present in the decode cache, a global lock is
acquired and the corresponding decode object inserted. Note:
this only applies for compulsory misses to the global shared
decode cache. If a core experiences a compulsory miss in
its private fetch cache, but the corresponding decode object
is found in the shared decode cache, no synchronization is
necessary, because searching in the decode cache can be done
without any data races, even in the case of a concurrent
insertion of a decode object.

Since the decode cache used in this scheme is an append-
only data structure with a statically known maximum size,
we organize it as an array-allocated AVL binary search tree.
This results in logarithmic look-up times, with respect to the
size of the cache.

In case the decode cache becomes full, we discard the entire
contents of the cache and start filling it anew. This approach,



Scalable Decode Caching in Multi-Core ISSs

CPUO Private Fetch Cache

PC Index
0x0001c828 0
0x0001befa 25%
L Global Shared Decode Cache
0x00d02e44 255 Decode Object AVL-node

asl r8, r3, Oxc

CPU1 Private Fetch Cache

PC Index
0x0001c870 0 add r0, r0, rO
0x000laaaa 255
0x00c05£fc| 255

Figure 4. Cache organisation for multicore execution. Core-
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whilst quite brutal, is very similar to QEMU’s handling of
translated code caches [5]. To guarantee the aforementioned
invariant, all cores must be stopped before the decode cache
invalidation is performed. Furthermore, the fetch caches of
all cores are also invalidated to eliminate any stale point-
ers. After the reset operation, cores experience compulsory
misses that result from filling up the decode cache again.

The major drawback of this scheme is the high cost of the
Stop-the-World cache reset. This can become a significant
portion of the simulation if the memory allocated to the
shared decode cache is small relative to the application work-
load size. However, as more and more cores are simulated,
more and more memory is saved by having a shared decode
cache, allowing for a larger decode cache size, resulting in
less frequent resets.

3 Evaluation

To evaluate the effectiveness of our novel caching schemes,
we extend the commercial Synopsys ARC® nSIM ISS simu-
lator, and run our experiments in multi-core mode. All ex-
periments are run on a 2.4 GHz 10-core Intel Xeon E5-2640,
host machine, running CentOS 6.6. We refer to the vendor-
provided caching scheme in the simulator as the Original
scheme, which is used as our baseline throughout.

3.1 Experimental Setup

Multi-core evaluation is facilitated by a collection of bench-
marks from the SPLASH-2 suite [22]. These benchmarks run
as multi-threaded guest applications; the number of guest
threads can be configured in powers of two.

In multi-core simulation, the Original and Indirect schemes
duplicate their decode caches for each simulated core, result-
ing in memory consumption increasing linearly with the
number of simulated cores. However, the Exclusive, Mixed,
and Parallel schemes duplicate only the smaller fetch cache.
Decode entries can be shared in a global memory pool, result-
ing in improved scalability for many-core simulation—the

RAPIDO 26, January 27, 2026, Krakow, Poland

Scheme Orig. Indir. Excl. | Mixed Par.
# of fetch entries 512 1024 2048 2048 2048
Fetch entry size 188 B 14B 14 B 14B 10B
# of private entrs. - 445 - 32 -
Private entry size - 184 B - 184 B -
# of shared entrs. - - 2900 2650 3150
Shared entry size - - 185 B 185 B 191 B
Total (8 cores) 752KB | 752KB | 748 KB | 749 KB | 748 KB
Total (128 cores) 11.8 MB | 11.8 MB | 40 MB | 4.7 MB | 3.1 MB
Reduct. over Orig. - 0.1% 66% 60% 74%

Table 1. Memory budget for multi-core simulation.

more cores that participate in cache memory sharing, the
more memory is available to increase the size of both the
fetch and decode caches. Alternatively, if the cache sizes are
fixed, the multi-core schemes will require less memory than
the Original scheme as more cores are simulated.

The multi-core schemes were evaluated using two config-
urations: 8-core, and 128-core. In the 8-core configuration,
the multi-core schemes match the memory budget of the
Original scheme. By sharing decode objects between 8 cores,
the memory budget allowed multi-core schemes to allocate
4x more fetch entries, and more than 4X more decode entries
before the memory budget was exhausted. This increased
cache size significantly improved cache performance, result-
ing in most binaries in our evaluation achieving near zero
miss rates. As increasing cache sizes further would not sig-
nificantly improve performance, the 128-core configuration
is evaluated using the same cache size configuration as the 8-
core simulation. As a result, the multi-core schemes require
significantly less memory than the Original scheme, whilst
still achieving significantly better cache performance. The
exact memory allocation is given in Table 1.

Furthermore, 128-core simulation evaluates the effect of
host thread contention. Since the host machine used for ex-
periments provides only 10 physical cores, simulating 128
virtual cores results in up to 13 host threads sharing a physi-
cal core.

3.2 Key Results

The novel multi-core schemes vastly improve cache perfor-
mance (Figure 5a), reaching average miss rates of 5.07% and
0.15% for fetch and decode caches respectively. In compar-
ison, the Indirect scheme resulted in average miss rates of
14.66% and 6.51% for the fetch and decode caches, whilst the
Original scheme’s miss rate of its unified cache was 22.62%.

In terms of runtime performance, the Exclusive and Mixed
schemes result in speedups of 1.05x and 1.12X respectively,
for 8-core configuration. Although the schemes are shar-
ing memory between cores, the synchronization overhead
negates the benefits of improved cache performance. In fact,
both schemes are often outperformed by the Indirect scheme,
which does not provide any multi-core sharing but does not
require any synchronization.
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Figure 5. Multi-core schemes evaluation.

The Parallel scheme achieves the best performance, with
speed-ups of up to 1.53%, and an average speedup of 1.36x
over the Original scheme. This outstanding performance is
achieved due to the low synchronization overhead and high
cache performance as a result of multi-core decode object
sharing. In fact, the Parallel scheme is the best performing
scheme for all benchmarks.

The Mixed scheme always outperforms the Exclusive scheme,
because the Exclusive scheme acquires alock to execute every
instruction, causing sequential execution of the most con-
tended instructions. On the other hand, the Mixed scheme
promotes decode objects of contended instructions to a small
core-private cache, improving execution parallelism. On av-
erage, the Mixed scheme results in about 35% of instructions
executing directly from the private decode cache.

In the 128-core configuration, the Parallel scheme contin-
ues to dominate with a speed-up over the Original scheme of
up to 1.57x and 1.31x on average (Figure 6). The raytrace

benchmark is a notable exception to this trend, as the Ex-
clusive scheme outperforms the Parallel scheme in this in-
stance. Due to the large instruction footprint of raytrace,
the Parallel scheme reaches the memory limit more than 600
times during the execution, and has to perform the costly
stop-the-world reset. Simulating 128 virtual cores makes this
reset particularly costly, resulting in diminished runtime per-
formance. Note, the Parallel scheme still outperforms the
Original scheme. Interestingly, the Mixed scheme results in
worse runtime performance than the Exclusive scheme for
simulated core counts that exceed the number of physical
host cores. This degradation occurs due to increased pressure
on the host operating system when scheduling the threads
that run the virtual cores. The Mixed scheme is designed
to keep the simulation running, by reducing contention on
the locks that manage access to shared decoded instruc-
tion objects. However, in certain workloads guest worker
threads use their own synchronization primitives to wait
for the initialization thread to complete, resulting in those
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Figure 6. Speedup of the novel multi-core schemes relative to the original scheme, in the 128-core configuration. This
configuration simulates guest cores using 128 threads on a 10-core machine, resulting in significant host thread contention.

worker threads running faster, and creating host Operating
System (OS) thread scheduling contention that ultimately
slows down the guest initialization thread.

3.3 Critical Evaluation

Our novel schemes have showed varied performance benefits
for different benchmarks. For example, benchmarks with low
instruction footprints do not benefit from improved cache
performance, but rather suffer a slowdown due to the addi-
tional overheads incurred in the novel schemes. For this class
of application, an adaptive scheme could monitor the cur-
rent cache performance and switch between decode cache
schemes dynamically to choose an optimal caching strat-
egy, given a constrained memory budget. Dynamic scheme
switching might be particularly beneficial to applications
with phased behaviour, as different application phases are
likely to exhibit different instruction pressure.

Similar adaptations can also be explored in multi-core
simulation. For example, an application can be initialized
using our low-synchronization Parallel scheme, and switch
to the Exclusive scheme dynamically if too many stop-the-
world resets are observed. Later, if increasing instruction
contention is observed, the decode caching scheme can be
changed again to the Mixed scheme.

Another limitation of the multi-core scheme is homogene-
ity, i.e. each virtual core is exposed to the same shared decode
cache hierarchy. This might be a sub-optimal memory allo-
cation for task-parallel applications as each task might have
different instruction footprints. Even in data-parallel appli-
cations, execution often comprises a sequential initialization
phase with a high-instruction footprint, and a parallel phase
with a smaller kernel. Increasing the memory budget, or mak-
ing the decode cache completely private for the application

thread performing initialization, might significantly speed
up the overall application.

4 Related Work

Whilst Instruction Set Simulator (ISS) and execution strate-
gies have found ample attention among researchers and
industrial developers, the specifics of caching of decoded
instructions in ISSs are less well documented. It is known
that interpreter-based ISSs have employed decode caching
for a long time [8, 9, 14]. The OpenRISC 1000 repository [1]
features a current example of an ISS that employs traditional
decode caching. The Talisman ISS uses decoded instruction
pages that contain slots for decoded instructions [4]. Each
decoded instruction page corresponds to a physical page of
a particular node’s memory. Decoded instruction pages are
allocated when a running program attempts to execute code
on a physical page that does not yet have a corresponding
decoded page. Both physical page structures and decoded
instruction page structures are allocated lazily. This means,
in principle, the Talisman decode cache relies on the address,
i.e. the PC for indexing its decode cache. In Chen et al. [7] a
hardware approach for reducing interpretation overhead has
been developed. This work introduces a unified fetch and
decode cache in hardware with up to 32 KiB size. It employs a
simple decode object, where each entry only stores a pointer
to a dispatch function, and two register/immediate fields with
altogether 12 bytes. While effective, this hardware support
for interpreted ISS is not available in any commercial pro-
cessors. A design for a decode cache, which is based on the
largest jump block, is developed in Xiao et al. [23]. Using this
strategy, the ISS can effectively adapt its decode cache size
at runtime. Stripf et al. [21] reduces the overhead of decode
cache lookups by linking decode instruction objects, relying
on the fact that for non-branch instructions, the following
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instruction is always identical. Lv et al. [16] only caches the
results of the decode stage, requiring a fetch operation for
every instruction. However, the decode cache is still indexed
using PC, resulting in the same instruction object duplication
as a unified cache. Trade-offs for decode caches in ISSs are
discussed extensively in Balderas-Contreras [3], Jones [12],
and a hybrid approach is shown in Reshadi et al. [20].

5 Conclusion

In this paper, we have demonstrated that traditional decode
cache approaches to interpreter-based ISS under-utilize the
memory allocated to them, due to duplication of decoded
instruction objects. Our novel multi-core schemes improve
memory utilization by introducing a novel cache data struc-
ture indexed by instruction encoding, and removing dupli-
cation using a globally shared decode cache. In an 8-core
simulation, our novel schemes improved cache performance
significantly, resulting in less that 0.5% of instructions requir-
ing decoding, while using the same amount of memory as
the traditional cache. Runtime speedup achieved up to 1.53%
and 1.36X on average. In 128-core simulation, speed-ups of
up to 1.57x and 1.31X on average were observed, while using
only 27% of memory relative to a traditional decode cache.
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Abstract

Discrete Event Simulations (DES) are one of the most widespread
approaches to model complex computer systems and are thus cru-
cial for virtual prototyping. In this paper, we consequently propose
A RISC-V-Coupled Accelerator for DES (ARCADES). We realize
this by leveraging RISC-V extensions to allow for control of the
accelerator, as well as implementing our custom event queue and
process queue in hardware. We evaluate the accelerator using an
FPGA implementation. Our experiments show that in event-heavy
scenarios compared to a software implementation, speedups of up
to 2.05X can be achieved. Owing to our accelerator being tightly
coupled with a PicoRV32 RISC-V processor, we can achieve a high
level of configurability and extendability, with ARCADES intended
to serve as the base for efficient ASIC DES accelerators.
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1 Introduction

With transistor scaling facing physical and economical limits, single-
core performance of general-purpose CPUs has also started to stag-
nate, marking the beginning of the post-Moore era [9, 41]. Moving
forward, experts thus suggest the direction of domain-specific archi-
tectures to achieve further performance gains [14]. Simultaneously,

This work is licensed under a Creative Commons Attribution 4.0 International License.
RAPIDO ’26, Krakow, Poland

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2287-5/2026/01

https://doi.org/10.1145/3787501.3787502

Derek Christ
University of Wiirzburg
Wiirzburg, Germany
derek.christ@uni-wuerzburg.de

Matthias Jung
University of Wiirzburg
Wiirzburg, Germany
Fraunhofer IESE
Kaiserslautern, Germany
m.jung@uni-wuerzburg.de

with increasingly complex systems and higher time to markets,
simulations are becoming increasingly important for virtual proto-
typing in order to, e.g., verify electronic circuits [15, 24]. Concerning
the field of simulations, the Discrete Event Simulation (DES) [25, 38]
is one of the most widespread simulation models, ranging far be-
yond the field of computer science [29, 39]. Here, updates to the
system state are only performed at distinct points in time where
an event is scheduled, thus skipping inactive periods until the next
scheduled event. For example, gem5 [23] one of the most widely
used full-system simulators, is considered to be a discrete-event
simulator. Therefore, accelerators for DES are of natural interest.
In this paper, we thus present ARCADES, a DES hardware accel-
erator by extending a RISC-V core with application-specific event
queue, process queue and kernel implementations. The accelerator
is implemented on an FPGA using a Verilog description and evalu-
ated against a software implementation. In this paper we make the
following contributions:

o To the best of our knowledge, we propose the first DES ac-
celerator to use a tightly coupled RISC-V core, thus profiting
from RISC-V’s lightweightness and extendability, creating
custom event queue implementations in the process.

o We implement ARCADES on an AMD/Xilinx XCZU5EV-
SFVC784-1-E FPGA, providing a prototype and demonstrat-
ing its feasibility.

o We evaluate the speedup compared to a software-based DES
as well as make area assessments for two different event
queue variants in real hardware experiments.

The paper is structured as follows:

The necessary background for this paper is presented in Section 2
with related work being outlined in Section 2.3. The implementation
of ARCADES is presented in Section 3 and evaluated in Section 4.
An outlook with concluding notes is provided in Section 5.

2 Background

In this section, we outline a number of fundamentals on DES and
RISC-V as well as presenting the related work.
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Figure 1: General concept of a discrete event simulation.

2.1 Discrete Event Simulation

The general concept of DES can be described as seen in Figure 1.
A simulation starts with a set of initial events in an event queue.
Events are scheduled at a specific point in time and, once triggered,
can prompt processes that may change the system state as well as
schedule new events. Processes are generally described as being
sensitive to selected events. When multiple processes are sensi-
tive to the same event, the execution is assumed to be performed
concurrently. However, the DES serializes this concurrency using
d-cycles as an infinitesimally small unit of time between, i.e., signal
assignments until a stable state is reached. The purpose of the ker-
nel is to coordinate the simulation timeline by retrieving the next
scheduled event from the event queue, advancing the simulation
time to match the event’s timestamp and triggering the execution
of the processes sensitive to the event. Note that the order in which
events are inserted into the event queue does not necessarily match
the order in which they are scheduled. Therefore, the event queue
requires a time-sorting mechanism to ensure the kernel retrieves
the correct event. The simulation ends once the event queue is
empty or a predefined maximum simulation time is exceeded.

By running multiple simulations that interact with one another
through messages, the DES approach can be further extended to a
Parallel Discrete Event Simulation (PDES) [13], requiring careful
consideration to balance the cost and performance advantage when
adding processors [36].

2.2 RISC-V

RISC-V is a free and open standard for an Instruction Set Archi-
tecture (ISA), particularly popular in the embedded area, as micro-
processors can be developed and manufactured with no additional
royalty fees [33]. Unlike, e.g., x86, RISC-V allows for developers to
create their own custom ISA extensions [8].

2.2.1 ISA Extensions. Concerning the instruction set, RISC-V al-
lows users to select a base instruction set with either 32-bit (RV32) or
64-bit (RV64) registers. RV32 is further split into RV32I and RV32E
variants, featuring 32 and 16 registers, respectively. In this paper,
we employ RV32L. Moreover, RISC-V offers a number of ratified ISA
extensions for, e.g., floating-point operations (F) or atomic instruc-
tions (A). For this work, we make use of the M extension, which
extends the RISC-V ISA with instructions for integer multiplication
and division.

As seen in Figure 2, RISC-V base instructions follow one of six
different instruction formats, for, e.g., J-Type jump operations or
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R-type instructions, where registers serve as both operands and
destination. In the R-Type instructions, along with the opcode, the
funct7 and funct3 fields are used to specify the operation to be
performed.

To extend RISC-V, four opcodes are dedicated to serving as cus-
tom opcodes, with the funct fields allowing for further distinctions
between custom instructions. After defining a new instruction that
naturally has to adhere to one of RISC-V’s instruction formats, the
RISC-V toolchain [2] has to be recompiled in order to make the
assembler aware of the new instruction.

A workaround method for RISC-V extensions while avoiding
adjustments to the RISC-V toolchain can be realized by mapping
custom instructions to the I-Type ebreak instruction. The ebreak
instruction is conventionally used in order to receive control to a
debugging environment. By modifying only the imm field, custom
instructions can also be introduced, with the processor halting the
current execution when encountering an ebreak.

2.2.2  PicoRV32 Core. The PicoRV32 is an open-source, compact
RISC-V processor core that implements the RV32IM instruction
set [42]. One standout feature of PicoRV32 is the Pico Co-Processor
Interface (PCPI), which enables direct communication between
custom modules and the CPU registers This makes it possible to
extend processor functionality by offloading specialized tasks to
external hardware accelerators without modifying the core [37].
Furthermore, works have shown that the PicoRV32 is possible to
implement using only open-source design flows [22] For this paper,
we thus chose a PicoRV32 as the host processor for our accelerator.

2.3 Related Work

The concept of creating dedicated machines to accelerate simu-
lations ranges all the way back to 1982 with the Yorktown Sim-
ulation Engine accelerating gate-level simulations [31]. More re-
cently, FPGA implementations to accelerate specific types of simu-
lations, such as RTL [21], Monte Carlo [3] or accelerating neural
networks [4, 35] are widely popular topics, with our paper contribut-
ing in the field of DES. Furthermore, approaches such as FAST [6]
even suggest new simulation methodologies by using hardware ac-
celerators for specific simulation tasks, such as handling the timing
model.

Concerning the field of DES, most notably, in [32], the authors
propose PDES-A, a parallelized DES accelerator implemented on an
FPGA. In contrast to our approach, the authors make use of an x86
Intel Xeon-based coprocessor, while we opt for RISC-V, promising
a more lightweight and open design. Additionally, since RISC-V is
highly flexible, we thus propose an accelerator that is both easier
to configure and extend. We further suggest a more area-efficient
event queue implementation compared to PDES-A.

Moreover, in [20] the authors present DES acceleration by of-
floading calculations for simulation time advancement to network
switches.

Using RISC-V has further proved to be a suitable base for the
development of hardware accelerators, as seen in works such as [10,
28, 34]. Beyond DES, approaches such as MEG [43] present a RISC-
V-based full-system emulation infrastructure using FPGAs.

One of the most popular methods to describe complex hardware
software systems is to use SystemC [1]. The simulation of these
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Figure 2: RISC-V base instruction formats [44].
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Figure 3: DES accelerator with PicoRV32 processor overview.

components using SystemC’s Transaction Level Modeling can be
understood as a DES [11, 40]. Using SystemC for simulation further
allows for temporal decoupling, thus no longer restricting simula-
tion components to the global simulation time, requiring careful to
maintain accuracy [19].

3 Accelerator Implementation

ARCADES can be described using the following components: an
event queue, containing the ordered sequence of scheduled events;
a process queue, containing the processes to be executed; and a
kernel functioning as the control unit between the queues and
the PicoRV32 processor. A schematic overview of our design is
shown in Figure 3. In this section, we present thie mplementation
of the accelerator components, including the coupling to the RISC-V
COprocessor.

3.1 Event Queue

When retrieving the next event from the event queue, it is obliga-
tory to keep the correct order in which events are scheduled on the
timeline. While there are many types of sorting algorithms imple-
mented in hardware [17], partial sorting is sufficient for our case, as
it is solely required to correctly retrieve the event that is scheduled
next instead of the entire sequence of events. Data-structure-wise,
the event queue can be implemented using a priority queue repre-
senting a heap-like or a list-like structure. In the following, we will
discuss both implementation options.

In [5], a binary heap called the pipelined-heap (P-Heap) is pro-
posed. A P-heap implemented in hardware also serves as the event
queue in [32]. At each node p; in a P-Heap, the property that all
children have a lower priority than p; must always hold. Retrieving
the element with the highest priority is thus as straightforward
as taking the root of the tree. Nevertheless, when dequeuing the
event at the root, the P-heap needs to keep its property regarding
the priority ordering. The child node with the higher priority is
thus moved up a level in the heap to fill in the gap left behind

Figure 4: P-heap dequeue operation. Leaf nodes are colored
in black.

by the removed node. This process continues at the next lower
level of the heap until a leaf node is reached. For n nodes, there
are O(log(n)) levels in the P-heap, therefore, the complexity for
the dequeue operation is O(log(n)), with the highest priority event
being retrieved in O(1). Vice versa, when enqueuing an event, start-
ing at the root node, at each level the priority of the new node is
compared with the existing node. The node with the lower priority
is shifted down towards the appropriate child node until reaching
a leaf node, leading to an O(log(n)) complexity for the enqueue
operation. In our case, the time an event is scheduled serves as
the priority. An example for dequeuing the highest priority event
in a P-heap can be seen in Figure 4. In comparison, maintaining
a fully sorted list of events can again guarantee O(1) complexity
for retrieving the highest priority event while leading to an O(n)
complexity for the entire dequeue operation, as all entries need to
be shifted by one position. Enqueueing an event into an already
sorted linked list results in O(n) complexity, as it means potentially
traversing over the entire list, starting at the highest priority entry.

For ASIC- or FPGA-based accelerators like ARCADES, these
data structures also require a hardware implementation, with pri-
ority queues having been shown to be efficiently implementable
in hardware [27, 30]. Notably, in [26] the authors compare the
area impact of different priority queue implementations, namely
binary trees, shift registers, FIFOs and systolic arrays. We build
upon this by comparing a heap to a list-based priority queue imple-
mentation in the context of a full DES accelerator. Both a linked list
and a priority heap structure are synthesized for an AMD/Xilinx
XCZUSEV-SFVC784-1-E FPGA using SystemVerilog descriptions.
Regarding the hardware implementation, the event queue resem-
bles a systolic array of registers containing the queue entries, where
upon enqueueing, entries are propagated through the queue by one
position per cycle until reaching their intended position, shifting
remaining entries in the process. A visualization of a list-structured
hardware implementation can be seen in Figure 5.
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Figure 5: Hardware implementation of the event queue.

Naturally, enqueue and dequeue operations have to be synchro-
nized in a way that we do not erroneously retrieve an event while
an enqueue operation with a potentially higher priority is still in
progress. However, as we start the enqueue operation at the highest
priority node, any newly inserted event is guaranteed to pass the
first queue entry in one clock cycle. For both the heap and the
list, we can thus safely retrieve the next event in the following
clock cycle, even if the new event has not yet reached its even-
tual position, requiring O(log(n)) steps in the heap or O(n) steps
in the list implementation. We analyze the impact of both queue
implementations in Section 4.

3.2 Process Queue

Concerning the process queue, an implementation via a conven-
tional First-In First-Out (FIFO) implementation is sufficient, as pro-
cesses do not require ordering, thus allowing for a scalable, light-
weight design. Naturally, empty and full flags are required to indi-
cate the queue state, among the straightforward FIFO enqueue and
dequeue operations.

The main challenge for a hardware-implemented process queue
is the limited FIFO depth, which can result in overflows. Once the
number of processes to be executed exceeds queue size, a process
queue implemented in software can serve as a backup. The full flag
indicates the overflow, signaling the DES algorithm to revert to the
software queue.

3.3 Kernel

To allow the DES to enqueue events and processes into their cor-
responding queues as well as retrieve the next scheduled event,
a kernel using custom RISC-V instruction is implemented. Using
inline assembly, developers can make use of our RISC-V directly in
C++ code via an interface provided by the kernel. For each of the
functions from the C++ interface, one corresponding custom RISC-
V instruction is introduced. To be precise, the following interface is
provided:

static inline void resetKernel()

static inline des::event* getNextEvent()

static inline void putEvent(des::eventx e, uint32_t t)
static inline bool eventQueueIsEmpty()

static inline des::proc* getNextProcess()

static inline void putProcess(des::proc* p)

static inline bool processQueueIsEmpty()
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Once one of the aforementioned functions is called by the simu-
lation software, the PicoRV32 will send out a valid signal via the
PCPI along with the opcode to the kernel, marking the offloading
of the DES task to the hardware accelerator. Upon receiving the
opcode, the kernel sets the corresponding signals to the hardware
queues to trigger the desired operations. In Listing 1, the case for
retrieving the next event from the queue is depicted.

if (pcpi_valid
&& KERNELCODE == OPCODE_KERNEL) begin
pcpi_wait <= 1;
case (OPCODE)
getNextEvent: begin
dequeue_event <= 1;
pcpifrd <= next_event_adress;
pcpi_ready <= 1;
pepi_wr <= 1;
end
insertEvent: begin

endcase
end

Listing 1: Snippet of SystemVerilog kernel.

Here, the kernel merely sets the dequeue_event signal connected
to the event queue to active, returning the event queue’s output
next_event_adress via the PCPI back to the PicoRV32, thus com-
pleting the communication task.

4 Evaluation

In this section, we outline our evaluation setup regarding the bench-
marks and FPGA implementation before presenting the results for
our proposed accelerator.

4.1 Setup

Concerning the experiments to evaluate ARCADES, we make use
of six different benchmarks. Furthermore, the benchmarks consist
of both event-heavy and process-heavy simulations, as depicted
in a breakdown of the software simulation time in Table 1. The
observation that most of the simulation time is spent inside the
simulation kernel aligns with results reported in works such as [12].
Using differently characterized benchmarks, we thus aim to provide
a fair assessment of ARCADES in different scenarios. Namely, the
benchmarks used are:

e diningPhil: A classic synchronization problem where 16

philosophers attempt to pick up forks at random intervals

and release them after a random time.

phold: A benchmark maintaining 5 logical processes with a

high amount of event-based interprocess communication.

e prodCons: A producer generates tokens at each positive

clock edge. The consumer consumes the token once it is

produced. 5000 tokens are produced in total.

counter: A basic counter that is incremented at every posi-

tive clock edge, counting up to 10,000.

e risc16: A simulation of a 16-bit RISC processor with 16 words
of instruction memory and 8 words of data memory running
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Benchmark | Event [%] | Process [%] | Kernel [%]
pipeline 2.63 48.06 49.31
risc16 1.37 39.05 59.58
counter 11.53 35.65 52.82
prodCons 11.09 35.08 53.83
phold 9.09 32.67 58.24
diningPhil 8.75 31.44 59.81

Event[%]: Percentage of simulation time spent handling events.
Process[%]: Percentage of simulation time spent handling processes.

Kernel[%]: Time spent inside kernel, including initialization overhead.

Table 1: Time distribution across specific simulation parts.

a small program with a mix of register, jump and load/store
instructions.

e pipeline: A 3-stage pipeline where each stage performs sim-
ple single-cycle computations, such as addition or subtrac-
tion, depending on the previous stage’s value. 5000 values
are inserted into the pipeline.

For our evaluation, we implement ARCADES on a Genesys ZU-
5EV development board, which features an AMD/Xilinx XCZU5EV-
SFVC784-1-E FPGA with 5.1 Mbit embedded BRAM, 117,120 LUTs
and 234,240 CLB flip-flops [16], with the program code for all bench-
marks residing in the BRAM. Using the AMD/Xilinx Vivado de-
sign flow, we synthesized and implemented a variant of ARCADES
with all DES functionality implemented in software through the
PicoRV32 coprocessor, as well as two variants with the acceler-
ator implemented in hardware. The two hardware variants are
distinguished by the implementation of the event queue, one imple-
mentation resembling a P-heap and one a linked-list structure, as
described in Section 3.1. The hardware process and event queues are
implemented to hold up to 256 entries each. As a proof of concept
for the software-based DES implementation, we resort to a generic
lightweight DES description without using SystemC [18].

4.2 Results

Regarding the speedup of the hardware compared to the software
implementation, both queue implementations behave equally, as
the next event can always be retrieved in one clock cycle and are
thus not distinguished in the following experiment. The simulation
time using the ARCADES hardware accelerator compared to the
software implementation can be seen in Figure 6. Considering the
simulation breakdown from Table 1, the event-heavier counter and
prodCons benchmarks achieve the highest speedups of 2.05x and
1.73%, respectively. This reflects the acceleration achievable thanks
to the hardware implementation of the event queue.

For the diningPhil, risc16 and phold benchmarks, very similar
speedups ranging between 1.44x and 1.52X are recorded. As for
these benchmarks, kernel time and thus communication overhead is
the most dominant part of the simulation time, the FPGA hardware
implementation cannot achieve the same speedup as a potential
future ASIC implementation, with FPGA interconnects naturally
providing a bottleneck. Our hardware queue implementations nev-
ertheless lead to consistent speedups.
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Figure 6: Performance comparison between a software and
the ARCADES hardware-based approach.

| BRAM DSP IO
Utilization [%] | 9167 032 5.16

Table 2: FPGA utilization for the ARCADES implementation.

While still providing a fair 1.38x speedup, for the pipeline bench-
mark the lowest speedup is recorded. Here, kernel time is lower
than in the other benchmarks, with event handling also playing a
significantly low role. Therefore, for this more process-heavy bench-
mark, the accelerator can profit less from hardware queues with
processes executed on the PicoRV32 in the hardware and software
implementation alike.

As we exploit inserting entries into the event queue starting at
the highest priority end, for both the P-heap as well as the simpler
list implementation, we achieve the same simulation time. While
both implementations utilize the same amount of BRAM, DSPs and
10 blocks, as listed in Table 2, differences in the utilization of the
configurable logic blocks, as depicted in Figure 7, arise, which can
serve as an indication for ASIC area assessments.

Notably, for a capacity of 256 entries, the list implementation
only requires 53% of the P-heap’s LUTs. Although flip-flop utiliza-
tion for the list queue also increases by 89%, flip-flops require a
lot less area compared to LUTs, as for a 5-input LUT, 32 SRAM
cells each consisting of 6 transistors are required, whereas D flip-
flops are typically implemented using 16 transistors. Furthermore,
considering the scalability of the queue implementation, for 512
entries, the state-of-the-art P-Heap implementation LUT utilization
already exceeds what is provided by our prototype board, while
the list implementations LUT usage remains at about 50%. The
simpler list implementation can thus be implemented in hardware
using fewer resources while performing better in terms of scala-
bility compared to the P-heap implementation typically found in
the literature, while being able to achieve the same speedups when
inserting elements at the highest priority end of the queue.
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Figure 7: Comparison of the CLB utilization between a P-
heap and the simplified list event queue for different Queue

Sizes (QS).

5 Conclusion and Outlook

In this paper, we have presented ARCADES, a hardware accelerator
for DES tightly coupled to a RISC-V host processor. Our results have
shown speedups of up to 2.05x% in event-heavy scenarios, whereas
even in process-heavy scenarios, speedups of at least 1.39X were
observed, demonstrating the accelerator’s potential for differently
characterized DES. We further outlined the resource utilization of
ARCADES on an FPGA, resorting to a simple list-structured event
queue, which can retrieve the next scheduled event at O(1) com-
plexity. ARCADES can thus serve as the base for accelerating more
complex DES, such as full-system simulations, with the combina-
tion of software optimizations to simulators such as gem5 [7] and
a hardware accelerator being a direction worth exploring. Further-
more, due to the RISC-V-based nature, ARCADES promises a more
lightweight and performance-oriented implementation compared
to, e.g., x86-based accelerators, as well as allowing for easier config-
uration with custom kernel implementations or additional kernel
functionality extensions.

Naturally, in terms of execution speed, our FPGA implementation
is not able to compete against a DES on high-end general-purpose
CPUs. Instead, we envision ARCADES on an FPGA as a prototype
for potential ASIC implementations of a DES accelerator. For future
work, we further intend to parallelize ARCADES using multiple
PicoRV32 coprocessors, promising greater speedups.
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ABSTRACT

The increasing complexity of cyber-physical systems makes fast
simulators essential in the early phases of development. In this
paper, a novel approach is proposed to take advantage of a C++-
based embedded language (StreamPU) combined with a high speed
hardware simulation framework (Verilator). This new methodology
is evaluated on three different scenarios featuring control systems.
Compared to existing solutions, speed-up factors from x2.25 to
more than x3000 are achieved with small error margins. The pro-
posed methodology leverages free and open-source tools, making
it easily available to the community. Moreover, this approach can
be extended to support hardware-in-the-loop simulations.
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1 INTRODUCTION

Cyber-physical systems combine interfaces, discrete, analogic and
physical subsystems, all interacting with each other [1]. They are
present all around us [2], as their number increased drastically in a
short time, along the innovations in the digital domain. They find
extensive usage in the Internet of Things, Smart Cars, Smart Homes,
Smart "Anything" [3]. Furthermore, these systems’ complexity and
heterogeneity rose sharply, and as a consequence, a critical require-
ment to simulate interactions across many domains appeared. As
discussed by Ferndndez-Mesa et al. in [4], some subsystems require
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discrete simulators, with fixed time step solvers. Other ones need
continuous time equation solvers. Exchanging data between the
two domains is no trivial matter, as synchronization problems arise
[5], slowing down simulations.

To address this issue, multiple solutions exist. The first one is to
add an Analog/Mixed-Signal (AMS) extension to an existing digital
system description language. A second approach involves using
two different simulators, and exchange information between the
tools to co-simulate the discrete and continuous time subsystems.
A third solution is to translate models into a different language
to ensure that it can be effectively executed by a more efficient
simulator.

Current methodologies do not permit high levels of model ab-
straction, present low simulation speeds because based on inter-
preted languages, or see their execution performance degraded by
data exchanges between multiple tools. Consequently, the necessity
becomes evident for a faster simulation alternative. Moreover, dur-
ing early development cycles and while performing coarse-grain
tuning of the studied systems, simulation speed becomes a critical
factor. This process often involves a large number of iterations. In
addition, it can be necessary to test several sets of parameters with
various systems’ topologies, once more showcasing the importance
of efficient simulation reconfigurability and fast execution.

Borrowing from the fact that SystemC provides good simulation
speed gains, the proposed solution makes use of the C++ program-
ming language across the whole simulation environment, in order
to leverage the performance benefits of compiled languages. How-
ever, for reasons explained in this paper, the proposed approach
employs the StreamPU [6] C++ library to benefit from its execution
speed and block-based modelling capabilities. This Domain Specific
Embedded Language (DSEL) has been chosen despite being initially
designed for processing feed-forward data streams of many values.
The proposed approach is based on the modules/tasks paradigm
from StreamPU to model the complete system. Therefore, contin-
uous time subsystems are implemented in pure C++ tasks. The
digital discrete subsystems C++ equivalent code is then generated
by Verilator [7] and wrapped in a task in the same manner. It should



RAPIDO’26, January 27, 2026, Krakéw, Poland

be noted that, both StreamPU and Verilator are open-source, and
free.

This study is done in the context of the automotive industry. For
this reason, the various simulation scenarios showcased represent
systems found in the automotive domain, where cyber-physical
systems are pervasive.

In this paper, existing methodologies for the simulation of cyber-
physical systems are first presented. Then, a new approach to im-
prove simulation execution time is described. Finally, experiments
are detailed, and their results analyzed, to compare the proposed
methodology to existing solutions.

2 PREVIOUS WORKS

In this section, the existing solutions to conduct cyber-physical
[1] simulations (i.e. part discrete and part continuous time) are
introduced. Their limitations are discussed, in order to identify
their weaknesses, and propose an adapted alternative approach.

2.1 Verilog-AMS / VHDL-AMS

Verilog-AMS [8] and VHDL-AMS [9] language extensions are aimed
at bridging the gap between logic and analog circuit simulations.
They are based on the original Verilog and VHDL Hardware De-
scription Languages. As such, most simulators supporting them are
initially designed for the base Verilog and VHDL languages. Despite
the fact that those extensions are not recent, very few simulators
support them, and even less to a good level. Verilator has very
limited support for some keywords, and to the author’s knowledge,
Xilinx’s Vivado does not support them at all.

2.2 SystemC / SystemC-AMS

SystemC [10] was introduced to enhance the modelling of whole
systems. Verilog and VHDL are restricting and have a level of ab-
straction too close to the hardware to effectively simulate software
/ hardware interactions. Moreover, as SystemC is implemented as a
set of C++ classes and macros, it is much faster to simulate than
traditional HDLs. Like the Verilog and VHDL HDLs, SystemC’s
specification was later improved with an AMS extension, named
SystemC-AMS [11]. This extends the SystemC language capabilities
to simulate cyber-physical systems, with both discrete, analog and
physical subsystems. This improvement requires a different simula-
tion environment than just compiling a C++ application. Solvers are
required for continuous-time equations and can be implemented
using a variety of techniques. The SystemC-AMS standard places
no restrictions on the choice of method. In practice, few simulation
tools support the SystemC’s AMS extension. COSEDA Technolo-
gies introduced a proof of concept for a C++ SystemC-AMS library
[12]. As it is easily available, its performance has been evaluated
and its results are compared to the proposed solution’s ones in this
paper. However, the tool’s development seems to have stopped a
few years ago. As pointed in [13], ease of extendability also seems
to be a weakness of SystemC-AMS. All those points prompted the
search for a different solution, leading to the choices presented in
this paper.
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2.3 MATLAB Simulink

MATLAB Simulink is a well-known block-based simulation environ-
ment. It features a furnished catalog of extensions, among which the
HDL Verifier one adds the possibility to co-simulate HDL languages
along a traditional Simulink model. To achieve this, the hardware
model simulator can be either Cadence’s Xcelium, Siemens’ Questa
Sim / ModelSim, or Xilinx’s Vivado. Usually, MATLAB Simulink can
leverage its variable time step solvers to greatly speed up simula-
tions. However, in coupled simulations, because of data exchanges
between the HDL simulator’s discrete domain and Simulink, the
time step can rarely be larger than the dynamic of the fastest logic
signal, which is often the clock period. It is important to note that
obtaining licenses for both MATLAB and the HDL simulator can be
a significant financial burden, even more so that all the compatible
simulators do not present the same performance levels.

2.4 C++ Code Generation

In parallel, to achieve faster simulation execution, research has
developed around translating HDL languages and physical models
descriptions into pure C++ code, such as presented by Fraccaroli
et al. in [14]. This approach enables good performance gains, by
eliminating most of the execution overhead, and mainly keeping
only the operations described in the system’s model. Moreover, as
the target language is compiled, the resulting simulations would
tend to be more resource efficient at execution time than would be
possible by using an interpreted language.

3 PROPOSED OPEN-SOURCE CO-SIMULATION
METHODOLOGY

3.1 StreamPU Project

StreamPU [6] is a Domain Specific Embedded Language (DSEL) for
streaming applications. It functions by connecting tasks together
through their sockets. The resulting execution graph is called a
sequence. Tasks are contained in modules. Modules have at least one
task, or multiple ones sharing the same context, as modules are im-
plemented as C++ classes, and tasks as C++ methods of those. The
tool excels at exchanging data vectors between tasks (i.e. when the
sockets’ size tends to be higher) in a feed-forward manner. The pro-
posed method, though, must deal with dependencies between each
scalar data and feedback loops. The main challenge is to preserve
good simulation performance in the particular case of StreamPU.
StreamPU simulations are compiled, and the tasks execution graph
is built only once. This static execution avoids the traditional sched-
uling overhead of dynamic execution. It is also important to note



A Simulation Methodology for Fast Verification of Cyber-Physical Systems

Verilated Non-Functional Model
1 Design | | %{ Task " Equations || Logger

) \

Socket

Figure 2: Proposed co-simulation environment

that sockets are implemented as a shared memory structure between
the connected tasks. This means that the overhead introduced by
data exchanges is thus minimized.

Designers familiar with block-based modeling tools may find
that StreamPU is not that different in its block / tasks philosophy,
as illustrated in Figure 1. Blocks become StreamPU modules and
tasks, and interconnections become sockets. This approach makes it
easy to re-use previously developed functions in various simulation
scenarios. StreamPU is for instance used in AFF3CT [15] and as
part of the Fast Meteor Detection Toolbox (FMDT) project [16].
Simulation scenarios are described in what is referred as a testbench.
This testbench, like the rest of the simulation, is written in the C++
language. Each task and its corresponding module are implemented
in a separate pair of C++ source and header files. Models follow a
simple template, which facilitates their reuse.

3.2 Verilator Simulation Tool

Verilator [7] is a fast Verilog simulator. It achieves higher speeds
than typical tools by translating the Verilog code into pure C++
instead of involving a simulation engine. Moreover, this lets the
compiler optimize the result to the best for the execution environ-
ment. Such translated hardware descriptions are said to be Verilated.
This Verilated design is then directly integrated in a StreamPU task,
with few additions to interface the model’s inputs and outputs
to StreamPU’s socket logic. As the proposed method imposes a
C++ simulation environment, it appears straightforward to adopt
Verilator as simulator. Additionally, this enables tight coupling of
the hardware design simulation with the C++ environment, limit-
ing costly data exchanges to the strict minimum. Another point is
that Verilator is free and open-source. To the authors’ knowledge,
this tool is accurate in regard to the descriptions when translat-
ing them to C++ code, making it a good alternative to commercial
computer-aided design tools.

3.3 Proposed Co-Simulation Environment

As presented in Figure 2, the proposed method enables to connect
multiple tasks together. This facilitates simulation reconfigurability,
and encourages task reuse. The model’s mathematical equations are
simplified and implemented in C++ in a StreamPU task manually.
The task is then connected with other already or newly designed
ones. The hardware description is translated to C++ code thanks to
Verilator and wrapped into another task. As illustrated in Figure 2, it
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is connected to other models in the same way, completing the cyber-
physical simulation. Notably, this implementation method does not
feature an equation solver, enabling performance improvements.
This might be restricting for certain use cases. Despite this, no
system has been encountered by the authors that cannot be modeled
with the proposed approach. It is important to note that all the
blocks in the simulation are built on StreamPU’s modules and tasks.
Tasks directly modeling the scenario (i.e. the verilated design or
model equations) are said to be functional tasks. Other tasks added
around for convenience or to help run the simulation (i.e. the Clock
or Logger blocks for example) are said to be non-functional. Non-
functional blocks can be freely inserted in the simulation graph to
fulfill various needs.

4 DEVELOPMENT AND EXECUTION OF THE
CYBER-PHYSICAL SIMULATION

4.1 Time reference

As there is no absolute time concept built into StreamPU and veri-
lated designs, it is necessary to find a way to define it for simulating
time-continuous models and real-world scenarios. This is done by
specifying a fixed time step as a common time reference across the
simulation, also named At in this paper. The time step is mainly
employed for integration operations in models requiring it. Each
module receives it as one of its attributes. In simulations with a
discrete subsystem, the time step’s value is fixed to the digital clock
period. Each simulation step corresponds to the execution of each
task of the sequence. Meaning the various models’ states are up-
dated for the current time, before advancing to the next step and
starting this process again. Applying a single time step across the
whole simulation avoids synchronization problems.

4.2 Additional Utility Modules and Functions

Much like AFF3CT builds on top of StreamPU by adding a set of
modules specialized for error correcting codes for digital communi-
cations, some utility modules are added to enable cyber-physical
systems simulation. A Logger module has been added, whose pur-
pose is writing in a file the data passed to its input. The logged data
can then be plotted and analyzed by another software. This module
is also in charge of data decimation at the logging stage. It means
that of all the data passed to it, only some will be written to the file.
In a simulation environment, this permits calculation at every step
without recording many unnecessary values. Moreover, the module
can run the file writing operation on a separate thread, minimizing
the impact of logging on simulation speed. A Clock module is also
included. It provides a point of entry for the simulation graph, and
stops execution at the designated time. Despite its name, it does
not provide time for the rest of the simulation.

4.3 Discrete Integration

Many models, such as electric motors or electronic capacitors, con-
tain an integral function. As the proposed method does not feature
a traditional solver, it becomes mandatory to find a good integration
approximation. A simple, fast, yet accurate enough in most cases
solution, is the trapezoidal rule [17] to approximate the integral in
a discrete manner. This rule states that the integral of a function
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can be estimated by approximating each region under the graph of
a function by a trapezoid. Thus, the considered function’s discrete
integral, with a fixed sampling time At and N samples, is expressed
as:

N-1
/f(t)dt ~ At % (JM + 3 flg)
k=1

This approximation is inexpensive to execute on a computer, as it
essentially consists in simple additions, one multiplication and an
accumulation. Moreover, it is more accurate than a simpler Euler
approximation for a very limited increase in terms of complexity.

5 EXPERIMENTAL EVALUATION
5.1 Simulation Setup

Three simulation use case were investigated. They all feature a
discrete time control subsystem alongside other models. For com-
parison purposes, all simulations are implemented both in the MAT-
LAB Simulink environment, and with the proposed approach. The
control subsystems are also implemented in hardware, plain C++
and MATLAB Simulink blocks. The HDL Verifier MATLAB toolbox
is used to co-simulate the hardware implementations with Xilinx
Vivado or Siemens’ Questa Sim simulators in Simulink. Hardware
implementations are described using the Chisel HDL [18], provid-
ing higher-level abstractions than traditional HDLs. The designs
are then compiled to Verilog for final implementation. This lan-
guage also features good parametrization and design configuration
capabilities. It enables saving time during implementation thanks
to a clear syntax and convenient functions. The experimental setup
operated to run the presented simulations is common to the three
simulation scenarios. For reading convenience, a few acronyms
are defined as follows: [SID] Simulink with Discrete solver, [SIC]
Simulink with Continuous solver, [SIVi] Simulink with Vivado sim-
ulator, [SIQs] Simulink with Questa Sim simulator, [Spu] StreamPU,
[SpuVe] StreamPU with Verilator. While [SID], [SIC] and [Spu] are
based on equivalent models of the control systems, [SIVi], [SIQs]
and [SpuVe] directly simulate the actual hardware implementations
through co-simulation (with Vivado or Questa Sim simulators), or
HDL translation (with Verilator).

5.2 DC Motor Simulation

As detailed in Figure 3a, the DC motor scenario considers the closed-
loop speed control of brushed DC motor. The time step parameter’s

value is set at 100 ns for the controller’s equivalent model simula-
tions, and 10 ns for the hardware implementation. This effectively
defines a clock frequency of 100 MHz.

5.2.1  Proportional Controller. The control function is implemented
by a proportional controller whose output is calculated with the
following equation :

emd = Kp X (up — wgqc) +0.5

where K, is the proportional gain value, u; the target speed, and
Wgaqc the measured speed image through the ADC. Note that the
output is raised by 0.5 as the "driver" stage provides a negative
voltage under 0.5 and a positive one over it.

5.2.2  Electric Driver Model. The PWM logic signal is converted
to a voltage value by the "driver". The mathematical formula to
calculate the output voltage v, from a logical signal with value
cmd is expressed as:

Vdro = cmd X (Vinax = Vinin) + Vimin

with Vipin and Viax being the maximal and minimal voltages to
produce depending on the command signal’s value.

5.2.3 Brushed DC Motor Model. The selected brushed DC mo-
tor model is detailed in [19]. The motor’s model parameters were
set close to real-life measurements [20], made by the company
Portescap, to stay in a realistic simulation environment.

5.24 ADC Model. The Analog to Digital Converter’s model used
is the so-called "perfect” one. As such, its equation is as follows:

— Wmin

= floor x (2N - 1)

Wadc

Wmax — Wmin

with o the current speed, wmin and wmqx the minimal and maximal
speeds supported by the ADC, and N the number of output bits of
the ADC. Under MATLAB Simulink, this ideal ADC block is used.
The C++ model is equivalent as it is based on the abovementioned
equation.

5.3 Gearbox Simulation

As showcased in Figure 3b, this scenario simulates an automatic
gearbox model coupled to a vehicle, shifting gears as the speed
evolves. The equations are based on the models provided in [21].
The time step parameter’s value is set at 1 ms for the controller’s
equivalent model simulations, and 100 ns for the hardware imple-
mentation. This effectively defines a clock frequency of 10 MHz.
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Table 1: Simulation error (%)

Scenario | SID/Spu SIVi/SpuVe
DC Motor¥ 1.3 1.0
Gearbox* 0.79 0.78
ABS* 0.07 0.03

*:t € [1ms;50ms]; ¢:t € [10 ms;20s];
A:t € [0s;13 5]

Table 2: Simulation duration for each configuration

Wall-clock time (s)
Scenario || SID SIC Spu | SIVi SIQs SpuVe
DC Motor||0.69% 055 0.06% | 19.9* 54.6* 0.018*
Gearbox |[0.0224 0.009 0.0044 | 614% 2016% 45%
ABS 0.025% - 0.004%(0.066% 0.224 0.0044
* Variable At; %: At = 100 ns; ¢: At = 10 ns; A: At =1 ms

5.4 Anti Blocking System Simulation

As presented in Figure 3c, this scenario simulates a car brake Anti
Blocking System (ABS), preventing the wheel from losing adherence
and reducing the vehicle’s stopping distance. The equations are
based on the models provided as an example by MathWorks in
[22]. The time step parameter’s value is set at 1 ms. This effectively
defines a clock frequency of 1 kHz for the simulated hardware
implementation.

5.5 Comparison Between SystemC-AMS and
StreamPU

In order to compare SystemC-AMS and StreamPU’s performance,
an experiment was conducted on both, as presented in this sec-
tion. The setup of this simulation’s environment is different from
the other experiments previously detailed. In this study, the previ-
ously mentioned brushed DC motor model is implemented both in
StreamPU and SystemC-AMS. Both environments are set to only
compute the simulation, without logging the results. The time step
is fixed to 5 ns and the simulations run for a duration of 50 ms. As it
is easily available, the SystemC and SystemC-AMS libraries version
2.3.4 provided by Accellera and CODESA Technologies were chosen.
Both environments are executed inside the same virtual machine,
as the SystemC-AMS library had compatibility issues with the pre-
vious experiment’s operating system. The virtual machine executes
the Ubuntu 20.04.6 LTS operating system, on the Virtualbox 7.1.4
software.

6 EXPERIMENTAL RESULTS ANALYSIS
6.1 Error Analysis

Table 1 presents the absolute error average values with regard to
MATLAB Simulink-based solutions for each simulation scenario.
Those values are obtained with the following formula:

error = mean(|f(t) - g(1)|/f(2))

with f(t) the values obtained with the proposed method, and g(t)
those obtained with Simulink. We have evaluated the average over
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Table 3: Execution time required to simulate 50 ms

SystemC-AMS | StreamPU
40s 1.2s

a smaller range than the whole simulation, as it is impossible to
normalize by 0. It is apparent that average error is small, ranging
from around 1.3% to as low as 0.03%. Error values are mainly linked
to the scenario, i.e. the models, rather than the choice of using an
equivalent C++ model or Verilator for simulating the controller. In
the case of the DC motor speed control scenario, we attribute part
of the higher error metric to potential differences in the Simulink
implementation of the models, which relies on available blocks
rather than the original C++ description. Nonetheless, the average
absolute error is relatively low in all scenarios tested, effectively
showcasing the proposed method’s correctness.

6.2 Simulation Speed Gain

As shown in Table 2 and Figure 4, which present the times taken
to simulate and the speed-up factors with regard to SID and SIVi,
for each scenario, StreamPU paired with Verilator or not, brings
a significant increase in simulation speed. The proposed method
achieves speed-up factors ranging from 2.25 in the worst case, to
factors as high as 3033 in the best case.

It is apparent that the speed-up factors are much lower when only
MATLAB Simulink is considered with the equivalent hardware mod-
els, compared to using co-simulation. This means using Siemens’
Questa Sim or Xilinx’s Vivado greatly slows down the simulation.
The deep integration of the verilated hardware models in the sim-
ulation environment avoids the highly time-consuming synchro-
nization operations present in MATLAB Simulink’s co-simulation
environment. The use of Verilator, which is comparatively faster
than Siemens’ Questa Sim or Xilinx’s Vivado, and its deep integra-
tion into the simulation environment contribute the most to the
simulation speeds achieved with the proposed methodology.

The DC Motor simulation appears to be more challenging for
MATLAB Simulink’s solver, explaining the big difference in speed-
up factor between this simulation scenario and the two other pre-
sented in this paper.

As showcased by the results in Table 3, this technique also
presents a simulation speed gain compared to SystemC-AMS, de-
spite both being fully implemented in C++. This behavior is mostly
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due to the lower overhead involved in StreamPU’s tasks scheduling
compared to SystemC-AMS.

6.3 Practical Considerations

As the proposed methodology’s implementation only supports a sin-
gle fixed time step across the whole simulation, the time step value
is set by the user to the smallest value acceptable for each simulated
model. This means some parts of the simulation are called more
often than needed. Consequently, using the proposed methodology
to simulate a system without a discrete model would probably pro-
vide less speed-up or even be slower than other simulators capable
of using variable time steps, such as some in MATLAB Simulink.
Further speed gains to the already good results could be obtained by
extending the implementation to support variable time steps. In the
proposed method, the integration operation is an approximation of
its mathematically complete version. As such, some models present
more error accumulation than others in particular simulation con-
ditions. The presented experiments already showcase good error
results, and other integration methods could be added to provide
more control over the simulation to the user.

7 CONCLUSION

In this paper, a simulation methodology for fast verification of cyber-
physical systems is detailed. The proposed approach, by following
an efficient method, and adding some utility functions, leverages
the speed of C++ simulations thanks to Verilator and StreamPU. By
this way, fast simulations of cyber-physical systems are executed.
Experimental results indicate that the proposed environment sig-
nificantly reduces simulation time. Consequently, it enables shorter
design iterations compared to alternative solutions. Moreover, the
proposed approach exclusively leverages free and open-source tools,
making it affordable to anyone.

Adding the possibility to execute multiple steps of the discrete
time domain simulation, for a single step in the rest of the system,
could also improve simulation speed for physical models with slow
reaction times. One can push the capabilities of the proposed ap-
proach to extend it for hardware-in-the-loop simulations, as the
use of a fully C++ environment brings a lot of implementation
flexibility. The proposed methodology leaves a lot of extensions
possibility to users, for them to adapt it to their particular use case.
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Abstract

Systolic arrays are widely used for high-performance dig-
ital computations, enabling efficient and parallel execution
of operations such as matrix multiplication and convolution.
They are deployed in digital signal processing and embed-
ded systems, and they have been more recently adopted to
accelerate deep neural networks. However, due to manu-
facturing defects, aging, and harsh environments, systolic
arrays are vulnerable to faults, which can compromise com-
putation reliability. These vulnerabilities call for reliability
analysis and hardening methods. Since full triplication in-
duces a high hardware overhead, this work introduces an
automatic method that applies redundancy only to the most
impactful flip-flops in the processing elements. FPGA simu-
lations show a wide Pareto trade-off between reliability and
hardware resources, offering flexible protection levels for
fault-resilient systems.
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1 Introduction

Efficient parallel computation is a fundamental require-
ment in modern digital systems, and specialized architectures
have been developed to meet high-performance and energy-
efficiency demands. Systolic arrays (SAs) [1] are one such
architecture, consisting of regularly arranged Processing Ele-
ments (PEs) that operate in a synchronized, pipelined manner
to perform parallel computations efficiently. This structure is
particularly well suited for repetitive operations, such as ma-
trix multiplication and convolution, which are widely used
in digital signal processing, scientific computing, and em-
bedded systems [2]. More recently, SAs have been employed
in modern deep learning accelerators, including Convolu-
tional Neural Networks (CNNs) and Google’s TPU [3], to
efficiently perform large-scale neural computations. Their
regular and modular design enables high throughput, pre-
dictable timing, and energy-efficient execution, with scalable
and reconfigurable architectures.
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While high-performance architectures achieve impressive
computational efficiency, their reliability remains a critical
concern. Indeed, digital circuits are vulnerable to various
faults arising from manufacturing defects, process varia-
tions, device aging mechanisms, as well as environmental
factors. Among these, radiation-induced Single-Event Effects
(SEEs) [4], such as Single-Event Upsets (SEUs), are partic-
ularly important because they can alter values stored in
registers. In systolic architectures, where computations are
distributed across multiple PEs and deeply pipelined, even
a single corrupted value can propagate across many stages
and significantly affect the final result. Ensuring reliability
against such events remains a key challenge, motivating
fault mitigation and hardening techniques that protect the
architecture while maintaining computational efficiency.

Robust fault-tolerance in digital architectures is commonly
achieved with full Triple Modular Redundancy (TMR) [5].
While effective, this approach incurs significant hardware
overhead. However, faults do not have the same impact
on the computational accuracy of Deep Neural Networks
(DNNs) [6]. In particular, errors affecting Most Significant
Bits (MSBs) of registers tend to degrade DNN outputs more
severely than faults in Least Significant Bits (LSBs). These
observations motivate a selective hardening strategy, where
only D Flip-Flops (DFFs) storing the most impactful bits are
triplicated, maintaining high fault tolerance while reducing
resource usage.

This work proposes a selective triplication methodology
for PEs, associated with a register sensitivity analysis, en-
abling the identification of optimal protection configurations
and their generalization to other SA architectures.

The remainder of this article is organized as follows. Sec-
tion 2 reviews related work and presents background on SAs.
Section 3 details the proposed selective hardening methodol-
ogy. Section 4 describes the experimental setup, while Sec-
tion 5 reports the experimental results. Section 6 discusses
the generalization of the approach to other architectures.
Finally, Section 7 concludes the article, summarizes the main
findings, and outlines future perspectives.

2 Background and Related Work

2.1 Background on Systolic Arrays

An example 4 X 4 SA with a detailed view of a PE is il-
lustrated in Figure 1. Without lacking of generality, and to
simplify the presentation, we detail our methodology on a
small size of systolic array. SAs can be organized according
to different dataflow strategies, which define how data are
reused and propagated across the array.

Each PE is the fundamental computational unit of a SA. It
typically performs a Multiply-and-Accumulate (MAC) oper-
ation between an input ‘A’ activation and a ‘W’ weight, while
also propagating the partial sum ‘S’ corresponding to the ac-
cumulation to its neighboring elements. The PE architecture
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Figure 1. 4 X 4 SA with a detailed PE.

includes local registers for inputs, weights, and partial sums,
supporting pipelined MAC operations.

2.2 Related Work

Among the research efforts that address the problem of
fault tolerance in SA architectures, various approaches have
been proposed to enhance their robustness.

FORTALESA [7] is a runtime-reconfigurable SA designed
to improve the reliability of DNN inference. It supports three
execution modes (no redundancy, Double Modular Redun-
dancy (DMR), and TMR), offering different protection levels
depending on reliability and performance requirements. In
DMR mode, neighboring PEs operate in main and shadow
pairs to detect and mask faults through averaging or ze-
roing mismatched bits, while TMR mode employs groups
of three PEs to provide fault correction. Another approach,
FSA [8], addresses fault tolerance in SA-based DNN accelera-
tors using a different strategy. This design employs a unified
re-computing module to recover computations affected by
faulty PEs, preserving inference accuracy under permanent
faults. Algorithm-Based Fault Tolerance (ABFT) is a classical
approach for detecting errors in matrix operations [9]. Re-
cent work has adapted ABFT for modern hardware. In [10],
the authors propose a lightweight ABFT technique for SAs on
FPGAs that performs block-level algorithmic checks during
matrix multiplication, achieving a high fault detection rate
while maintaining low hardware and performance overhead.

Unlike conventional redundancy schemes that replicate
entire PEs, our approach provides fine-grained protection
at the register level within each PE. This reduces hardware
overhead while maintaining sufficient fault tolerance for
inherently error-tolerant workloads such as DNN inference.

3 Proposed Method for Selective Hardening

This section presents the selective approach to enhance
fault tolerance. First, the method is applied to a single data
word, then to the registers within a PE.

3.1 Principle of Selective TMR

To enhance fault tolerance, the proposed hardening is per-
formed selectively, focusing on protecting only the MSBs of
each register. Figure 2a illustrates the principle of selective
triplication applied to a N-bits data word. In this approach,
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Figure 2. Selective TMR and hardened PE example.

the M MSBs out of a total of N bits in a data word are tripli-
cated, while the remaining N — M LSBs are left unprotected.

A bit-flip occurring in an integer or fixed-point encoded
value affects its numerical magnitude according to the posi-
tion of the flipped bit. More precisely, an error on bit position
n changes the value by +2" in integer representation, or by
+2"f in fixed-point formats, where f denotes the number
of fractional bits. As expected, faults occurring in the MSBs
induce larger deviations in the computation, whereas those
affecting the LSBs have a negligible impact on the final result.

The resulting hardware overhead in DFFs for a single regis-
ter is given by Oppr = % This represents the percentage of
additional DFFs relative to the unprotected implementation.

3.2 Selective Hardening applied on a PE

In this work, fault-tolerance is applied selectively to the
sequential elements within each PE. Specifically, only the
DFFs storing the MSBs of activations (A), weights (W), and
the accumulator (S) are protected using selective TMR. The
level of protection can be adjusted by choosing the number
of bits to triplicate in each register of the PE.

A PE configuration is described using the following nota-
tion A: T(M)U(N-M)-W: T(MYU(N-M)-S: T(M)U(N-M) , where
A:T(M)U(N-M) indicates that the M MSBs of the A register are
protected by TMR, while the remaining N — M LSBs are un-
protected. The notations W: T(M)U(N-M) and S: T(M)U(N-M)
apply similarly to the W and S registers, respectively. For
instance, Figure 2b shows a PE hardened using the A: T3U5-
-W:T4U4-S:T14U4 configuration, illustrating how the method-
ology is applied. In this example, the accumulator register is
18 bits wide to safely store the sum of four 8-bit multiplica-
tion results, preventing any overflow.

4 Experimental Setup

This section presents the experimental setup used to eval-
uate the robustness of the proposed architecture. It outlines

the fault model and the compilation flow used to perform ac-
curate Register Transfer Level (RTL) simulation and analysis.

4.1 SEU-based Fault Model

To assess the robustness of the proposed architecture, we
considered an SEU-based fault model targeting its internal
registers. Each PE contains 34 registers (16 for the 8-bit input
operands A and W, and 18 for the accumulator S), leading to a
total of 544 registers across the 4 X 4 PE SA. To evaluate the
design exhaustively, we consider all possible SEU faults af-
fecting the registers during a matrix multiplication. Since the
multiplication of two 4 X 4 matrices completes in 15 clock cy-
cles [1], this results in 544X 15 = 8,160 distinct fault scenarios
for a single input matrix pair. These scenarios must be eval-
uated at the register level with cycle-accurate precision to
capture the fault behavior at the hardware abstraction level.

Each experiment consists of multiplying a pair of ran-
domly generated 4 X 4 integer matrices. The total number of
possible input matrix pairs is extremely large (28%16*2), mak-
ing exhaustive evaluation impractical. Therefore, a statistical
estimation equation [11] with a maximum error margin set as
5% and at 90% confidence level was employed, resulting in 271
randomly generated matrix pairs. Combining all fault loca-
tions with all input matrices leads to 8, 160 x 271 = 2,211,360
individual faults injected. This approach enables a reliable
evaluation of the system behavior across all feasible fault
locations while keeping the computational effort manage-
able. The scale of the events being simulated motivates the
need for a efficient simulation infrastructure, compiler-based
simulations has proven to provide state of the art [12] per-
formances for RTL simulations.

4.2 Compilation Flow

The compilation flow, illustrated in Figure 3, transforms
the modural SA design defined using the Chisel [13] Hard-
ware Description Language (HDL) into a form suitable for
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Figure 3. Modified toolchain to support fault injection.

cycle-accurate RTL simulation, fault injection, and hardware
synthesis. By leveraging a toolchain using established com-
piler and hardware infrastructure tools, we took benefice of
existing infrastructure and enabling our custom simulation
flow. The following subsections describe each tool and its
role in the workflow.
LLVM
LLVM [14] is a compiler framework designed to facili-
tate the development of programming languages by defining
an Intermediate Representation (IR) aimed to handle com-
piler back-end. This representation is kind of hardware and
language agnostic, and is used to apply a large range of
optimization to target hardware architecture such as x86.
MLIR
Multi-Layer Intermediate Representation (MLIR) [15] is
a compiler framework and IR that extend LLVM and that
aims to provide a rich and flexible infrastructure to build
compilers that feature different levels of abstraction. Dialect
represents a domain specific semantics defined using Opera-
tions, Types and Passes (transformation). MLIR is designed to
create, optimize, and transform an IR across various dialects.
CIRCT
Circuit Intermediate Representation Compiler and Tools
(CIRCT) [16] is a compiler infrastructure built with MLIR and
design to handle hardware flows such as High Level Synthe-
sis, Hardware Description Language (HDL) front-end such as
Chisel or simulation. Notably, these flows are defined using
several dialects, linked to specific hardware abstraction. For
instance, Flexible IR for RTL (FIRRTL) integrated into Chisel
describes an RTL dialect. More specific dialect exists: comb
defined combinational logic while seq adds sequential logic.
ARCILATOR
Arcilator [17] is a cycle-accurate RTL simulator part of
CIRCT project. It leverages abstractions defined in the Arc
dialect and, from hardware descriptions defined in the comb
and seq dialects, generates an LLVM dialect program that
accurately models the behavior of the circuit. Notably, all
circuit registers are mapped to a LLVM memory buffer.

4.3 Fault Injection Simulator

An analysis during the simulator compilation allows for
the extraction of RTL registers position in the generated
LLVM. This allows the use of Arcilator for error injection
simulations. This approach has several advantages: it incurs
no time overhead compared to standard simulation, as faults
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Figure 4. Heatmap of registers (A, W and S) sensitivity.

are applied as bit flips inside a buffer, and it requires no
modification to the original design.

4.4 Fault-aware RTL

After completing the simulation campaign, the circuit
must be protected according to the sensitivity analysis. To
accomplish this, we leverage the Verilog front-end integra-
tion with CIRCT to define custom MLIR passes that generate
the hardware required for fault mitigation. Verilog annota-
tions guide HDL synthesis, notably for redundant registers.
To ensure that duplicated DFFs are not optimized away dur-
ing synthesis, a KEEP attribute is applied to these registers so
that the reported DFF overhead reflects the intended protec-
tions. The IR is then translated into a Verilog representation
and synthesized to obtain more fine hardware information.

5 Experimental Results

This section presents the evaluation of the proposed selec-
tive hardening methodology. We analyze fault propagation
in SAs, the resulting reliability improvements, the associated
hardware overhead, and identify Pareto-optimal protection
configurations.

5.1 Fault Propagation in Systolic Arrays

In this study, we consider an Output Stationary (OS) SA,
where partial sums remain in each PE while input activations
and weights flow through the array.

Single bit-flip faults are simulated in the internal registers
storing input activations (horizontal flow), weights (vertical
flow), and partial sums (accumulation followed by vertical
flow). Let R denote a register in the SA. For each injection
experiment i targeting R, we define the deviation from the
fault-free reference (golden inference) as d;. The aggregated
deviation for register R is obtained by summing over N ex-
periments, Dg = Zfil d;, and the normalized fault sensitivity
is defined as Sp = Dg/maxg Dy € [0, 1], where the maxi-
mum is taken over all registers R in the SA. For each register
type, the fault sensitivity was measured and visualized by
heatmap as presented in Figure 4, offering a clear view of
how errors propagate through the array depending on their
position and their impact on the final computation.

Distinct sensitivity patterns are observed for each register
type. For input registers (A), the leftmost column, PE(x,0),
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shows the highest sensitivity, as activations propagate hori-
zontally and are reused by subsequent PEs along the same
row, allowing early faults to propagate further. For weight
registers (W), the most sensitive elements are located in the
top row, PE(0, ), where vertical data reuse amplifies the
impact of early bit-flips along the column. In contrast, the
accumulation registers (S) exhibit almost uniform sensitivity
during computation, since all PEs perform similar accumu-
lation operations. However, during the output phase, the
last active row becomes more critical because it stores the
final accumulated results. Any bit-flip at this stage directly
corrupts the output. Accumulators in other PEs no longer
contribute to the matrix result and thus have no effect once
their computations are completed.

Furthermore, accumulation registers are inherently more
sensitive due to their larger bit-width. As already explained,
input and weight registers are encoded on 8 bits, whereas
accumulation registers use 18 bits. As a result, a single bit-
flip in an accumulator can have a significantly larger impact
on the output value. The maximum normalized sensitivity of
an accumulation register is approximately 7.5 times higher
than that of an input register, indicating a corresponding
increase in potential sensitivity.

These findings demonstrate that fault propagation in SAs
is directional, reflecting the inherent dataflow of the archi-
tecture, and that the behavior would differ under alternative
dataflows such as Weight Stationary or Input Stationary.

5.2 Reliability Improvement

Based on the selective PE protection strategy described
earlier, we generate the simulation setups for all possible
configurations of PEs within a 4 X 4 SA. For each configu-
ration, we evaluate the effect of the protection mechanisms
by comparing the fault behavior against a baseline design
without protection. The reliability is quantified by measuring
the Manhattan distance between the output resulting from a
single bit-flip and the reference matrix output, which is then
normalized. For instance, if the MSBs of an accumulator are
triplicated, any fault affecting these bits can be corrected and
will no longer impact the computation, effectively reducing
the register’s sensitivity. Increasing the degree of triplication
further improves the protection of the design. This approach
allows a systematic analysis of how each configuration in-
fluences the overall reliability of the array.

5.3 Pareto-optimal Configurations

Each PE in our study contains three registers: A, W, and S.
For each register, we consider protection strategies ranging
from no bits protected to all bits protected, prioritizing the
MSBs. This gives 9 possible configurations for A and W (0 to
8 bits protected) and 19 possible configurations for S (0 to
18 bits protected). By enumerating all combinations of these
three registers, we obtain 9 X 9 X 19 = 1,539 possible PE
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Figure 5. Comparison of Pareto-optimal configurations.

configurations, each exhibiting a distinct trade-off between
reliability and hardware overhead.

The results obtained for all configurations are shown in
Figure 5a. Among these, only 33 configurations belong to the
Pareto front with respect to the two criteria, representing
the best trade-offs between reliability and hardware over-
head. These configurations range from no protection with
minimal hardware cost to full protection with the maximum
overhead, providing guidance for selecting efficient protec-
tion strategies in SAs. Figure 5b illustrates the evolution of
register protection across the 26 Pareto-optimal hardened PE
configurations that are displayed. Initially, 33 configurations
were identified as Pareto-optimal. However, due to the pres-
ence of zeros in the 271-input matrix, some configurations
show small differences, since a bit-flip may be nullified when
multiplied by zero, even though the sensitivity is effectively
identical for the A and W registers. To provide a clearer view,
only configurations where A and W are protected equally are
shown. The degree of protection applied to accumulation reg-
isters (S) and input/weight registers (A and W) is presented for
each configuration. It can be observed that the accumulation
registers are consistently prioritized for protection compared
to the input and weight registers. This behavior aligns with
the previous fault sensitivity analysis, where accumulation
registers exhibited higher vulnerability due to their larger
bit-width and critical role in storing intermediate results.
The figure highlights how the selective protection strategy
naturally focuses on the most critical registers, providing
efficient reliability improvement across the SA, as guided by
the sensitivity metric.
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5.4 Hardware Overhead

To evaluate the hardware overhead induced by the pro-
posed selective protection strategy, we synthesized all 33
Pareto-optimal hardened PE configurations within the 4 x 4
SA. From the synthesis report_utilization provided by Vivado
2025.1 and targeting a Zyng-7000 FPGA, we extracted the
number of Look-Up Tables (LUTs) and DFFs used. The re-
sults, shown in Figure 6, are presented in ascending order
of overhead. The baseline PE contains 34 DFFs, resulting
in a total of 544 DFFs for the 4 X 4 SA. For the most pro-
tected PE design, the total number of DFFs reaches 1,632,
corresponding to a 200% increase compared to the baseline.
Interpreting LUT utilization is more complex, as the synthe-
sis tool applies optimizations that may reduce or share logic
resources. In practice, the LUT count ranges from 1,408 to
2,308 across all configurations, reflecting the impact of these
optimizations rather than a strictly increasing trend with
additional protection.

6 Generalization to Other SA Architectures

This section explores the applicability of the proposed se-
lective hardening methodology beyond the baseline SA. We
first analyze its impact under a weight-stationary dataflow
and then discuss its scaling to larger array sizes.

6.1 Weight Stationary Analysis

Although the Weight Stationary (WS) and OS dataflows
share similar PE architectures, differences arise in the num-
ber of registers involved and in the way data is managed
within the array. In the WS dataflow, the W registers are first
loaded and then remain stationary. This leads to a differ-
ent exposure pattern compared to the A registers, which are
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continuously streamed through the array. The S registers
also behave differently, since they store values encoded with
a larger bit width. These characteristics affect the relative
sensitivity of the registers and result in changes to the Pareto
front compared to the OS dataflow. Figure 7 illustrates the
Pareto front and the performance of all PE configurations
for the WS dataflow, which reflects these distinctions.

6.2 Scaling to Larger Arrays

To assess the scalability of the proposed compilation flow
and selective hardening methodology for design-space explo-
ration, we extended the analysis to SAs performing matrix
multiplications of size H X H, with H ranging from 2 to 8.
Figure 8 reports partial sets of Pareto-optimal configurations,
similar to Figure 5a, and illustrates how the trade-off changes
with matrix size. The hardware overhead varies because the
accumulator S requires a larger bit width as H increases to
avoid overflow, resulting in three register sizes (X = 17 bits
for H = 2, Y = 18 bits for H = 3-4, and Z = 19 bits for
H = 5-8). Regarding normalized sensitivity, protection is
slightly less effective for larger H when using the same hard-
ened PE configuration and S register size. This behavior is
consistent with the longer propagation paths in larger SAs,
which increase the impact of error effects.

7 Conclusion and Perspectives

This paper presented a methodology for selectively hard-
ening processing elements of systolic arrays to improve
fault tolerance. The approach was evaluated through exhaus-
tive RTL cycle-accurate simulations, analyzing fault prop-
agation, reliability improvement, hardware overhead, and
Pareto-optimal protection configurations. Results demon-
strate that selective hardening can significantly enhance
reliability while limiting additional hardware cost. Although
the study focused on a 4 X 4 systolic array, the methodol-
ogy and proposed simulation toolchain generalize to other
dataflows and larger arrays. Future work may explore het-
erogeneous or additional protection within a single systolic
array and extend the fault model to multiple bit upsets.
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