
HIPEAC 2020 Conference

Proceedings of

RAPDIO 2020 Workshop

Bologna, Italy

21th January 2020

I

Organizing committee

Daniel Chillet, University of Rennes 1
Reda Nouacer, CEA List

Morteza Biglari-Abhari, University of Auckland
Daniel Gracia Pérez, Thales Research & Technology

Gianluca Palermo, Politecnico di Milano

Program committee

Mario Porrmann, Bielefeld University
Roberto Giorgi, University of Siena

Philipp A. Hartmann, Intel
Jeronimo Castrillon, TU Dresden

Sotirios Xydis, National Technical University of Athens
Michael Huebner, Ruhr-University Bochum

Tim Kogel, Synopsys
Frédéric Pétrot, TIMA Lab, Grenoble Institute of Technology

Antonino Tumeo, Politecnico di Milano
Pierre Boulet, Univ Lille 1, CRIStAL
Davide Quaglia, University of Verona

Christian Haubelt, University of Rostock
Alper Sen, Bogazici University

Website

https://rapidoworkshop.github.io/

https://rapidoworkshop.github.io/

II

Schedule

— Workshop Introduction 10 : 00− 10 : 05

— Session 1 10 : 05− 10 : 50
— Keynote 1 : Reda Nouacer, CEA

Digital twin for cyber physical systems

— Session 2a 11 : 30− 12 : 15
— Keynote 2 : Fadi Kurdahi, Center for Embedded & Cyber-physical Systems

University of California, Irvine
Towards Self-Aware Systems-on-Chip Through Intelligent Cross-Layer Coordina-
tion

— Session 2b 12 : 15− 12 : 55
— Boutheina Bannour and Arnault Lapitre

Heuristic-aided Symbolic Simulation for Trickle-based Wireless Sensors Networks
Configuration

— Éder F. Zulian, Germain Haugou, Christian Weis, Matthias Jung and Norbert
Wehn
System Simulation with PULP Virtual Platform and SystemC

— Session 3a 14 : 00− 14 : 45
— Keynote 3 : Muhammad Shafique, Vienna University of Technology Institute

of Computer Engineering
Security for Machine Learning : The Intelligence Features of Your Smart Cyber
Physical Systems are under Attack !

— Session 3b 14 : 45− 15 : 25
— Irune Yarza, Mikel Azkarate-Askatsua, Peio Onaindia, Philipp Ittershagen, Kim

Grüttner and Wolfgang Nebel
Static/Dynamic Real-Time Legacy Software Migration - A Comparative Analysis

— WIP paper : Vincent Morice, Florence Maraninchi and Jérôme Cornet
Towards A Power Advisor in a Devkit for Internet-of-Things Microcontrollers

— Session 4 16 : 00− 16 : 45
— Keynote 4 : Eugenio Villar, Grupo de Ingenieŕıa Microelectrónica Universidad

de Cantabria
Mega-Modeling and Model-Driven Performance Analysis of CPSoS

III

List of regular papers

Heuristic-aided Symbolic Simulation for Trickle-based Wireless Sensors Networks Configura-
tion , Boutheina Bannour and Arnault Lapitre

System Simulation with PULP Virtual Platform and SystemC, Éder F. Zulian, Germain Hau-
gou, Christian Weis, Matthias Jung and Norbert Wehn

Static/Dynamic Real-Time Legacy Software Migration - A Comparative Analysis, Irune Yarza,
Mikel Azkarate-Askatsua, Peio Onaindia, Philipp Ittershagen, Kim Grüttner and Wolfgang
Nebel

WIP : Towards A Power Advisor in a Devkit for Internet-of-Things Microcontrollers, Vincent
Morice, Florence Maraninchi and Jérôme Cornet

1

Keynotes

Keynote 1 10 :05 - 10 :50

Digital twin for cyber physical systems
— Reda Nouacer, CEA

— Abstract : Since the first use of the word ”Digital-Twin” by Michael Grieves in a 2003,
several research publications have addressed the technical obstacles underlying the im-
plementation of this concept. In parallel with these academic research works, several
industrial research projects have been undertaken for an evaluation in real or repre-
sentative conditions of this approach. Certain sectors, such as nuclear and aeronautics,
exploit digital twins throughout the life cycle of their products and in particular for
the training of operating or maintenance personnel. Today the proof is made of the
usefulness of the digital twin but unfortunately we note that the deployment of this
approach is limited to a few areas of application and only the category of large indus-
trial groups have access to it but in limited usages. The objective of the presentation
is, firstly, to review the theoretical foundations and known uses of the digital twin in
the field of CPS. Then to expose, in a second part, the blocking points to a massive
deployment of this approach in the industrial world. The presentation ends with the
proposal of the economic model MSaaS (Modeling and Simulation as a Service) which
should answer a certain number of the identified problems and allow the emergence of
an agile ecosystem to meet the needs of the industry in this field.

— Biography : Reda NOUACER is a research engineer at CEA LIST where he work
on design space exploration and virtual platforms. Before he worked at Prosilog SA
and then at Texas Instruments. His research interests include design space exploration,
hardware simulation, and dependability using virtual platforms. He earned a HW/SW
Engineer degree in 1993 and the Magister degree in 1997 in Computer Engineering from
the Badji-Mokhtar University (Annaba-Algeria). His thesis entitled ‘CAMELEON : A
Parallel Architecture Emulator’ summarizes his work on building a low-cost emula-
tor of parallel architectures for parallel programs validation. Reda NOUACER is and
has been involved in many interdisciplinary national and international basic research
projects as well as industrial research projects.

Keynote 2 11 :30 - 12 :15

Towards Self-Aware Systems-on-Chip Through Intelligent Cross-Layer Coordina-
tion

— Fadi Kurdahi, Center for Embedded & Cyber-physical Systems University of Califor-
nia, Irvine

2

— Abstract : Although there is a rich history of cross-layer design for embedded com-
puting systems to achieve desired QoS, we are facing ever more challenges from the
intertwined goals of energy- efficiency, thermal design constraints, as well as resilience
to errors emanating from the application, environment and hardware platforms. We
posit that next-generation computing platforms must necessarily deploy intelligent
cross-layer design achieved through self-awareness principles inspired by biology and
nature. Such an approach will move us from current strategies (using limited cross-
layer coordination) to a holistic cross-layer strategy that enables intelligent cross-layer
management policies which can adaptively tune itself based on the current state of the
system. The talk will present design exemplars that embrace this intelligent cross-layer
approach, and highlight the role of self-awareness in achieving dynamic adaptivity.

— Biography : Fadi Kurdahi received his PhD from the University of Southern Cali-
fornia in 1987. Since then,he has been a faculty at the Department of Electrical &
Computer Engineering at UCI, where he conducts research in the areas of Computer
Aided Design and design methodology of large scale systems. He serves as the As-
sociate Dean for Graduate and Professional Studies of the Henry Samueli School of
Engineering, and the Director of the Center for Embedded & Cyber-physical Systems
(CECS), comprised of world-class researchers in the general area of Embedded and
Cyber-physical Systems. He served on numerous editorial boards, and was program
chair or general chair on program committees of several workshops, symposia and
conferences in the area of CAD, VLSI, and system design. He received the best paper
awards for the IEEE Transactions on VLSI in 2002, ISQED in 2006 and ASP-DAC
in 2016, and other distinguished paper awards at DAC, EuroDAC, ASP- DAC and
ISQED. He also received the Distinguished Alumnus award from his Alma Mater, the
American University of Beirut in 2008. He is a Fellow of the IEEE and the AAAS.

Keynote 3 14 :00 - 14 :45

Security for Machine Learning : The Intelligence Features of Your Smart Cyber
Physical Systems are under Attack !

— Muhammad Shafique, Vienna University of Technology Institute of Computer Engi-
neering

— Abstract : Access to massive amounts of data and high-end computers has heralded
revolutionary advances in Machine Learning (ML) impacting domains ranging from
autonomous driving and robotics, to healthcare, the natural sciences, the arts and
beyond. As we deploy modern ML systems in safety- and health-care applications,
however, it is important to ensure their security against adversarial attacks. Resear-
chers have shown that many modern ML algorithms, especially the ones based on
the deep neural networks (DNNs) are fragile and can be embarrassingly easy to fool.
This is easier said than done. Recent research has shown that DNNs are susceptible
to a range of attacks including adversarial input perturbations, backdoors, Trojans,
and fault attacks. This can create catastrophic effects for various safety-critical appli-
cations like automotive, healthcare, etc. For instance, self-driving cars and vehicular
networks, which heavily rely on ML-based functions, exhibit a wide attack surface that

3

can be exploited by well-known and yet-unknown-but-possible attacks on ML models.
DNNs contain hundreds of millions of parameters and are hard to interpret/debug let
alone verify, significantly increasing the chance they may misbehave. Further, any ML
system is only as robust as the data on which we train it on. If the data distributions
change in the field, this can impair performance (for example, an autonomous vehicle
trained in day time conditions may not function at nighttime). The goal of this talk
is to shed light on various security threats for the ML algorithms, especially the deep
neural networks (DNNs). Various security attacks and defenses for DNNs will be pre-
sented in detail. Afterwards, open research problem and perspectives will be briefly
discussed.

— Biography : Muhammad Shafique (M’11 - SM’16) received the Ph.D. degree in com-
puter science from the Karlsruhe Institute of Technology, Germany, in 2011. He is
currently a Full Professor with the Department of Informatics, Institute of Computer
Engineering, TU Wien, Austria, where he is directing the group on Computer Ar-
chitecture and Robust, Energy-Efficient Technologies. He holds one U.S. patent and
over 200 papers in premier journals and conferences. His research interests include
computer architecture, energy-efficient systems, robust computing, hardware security,
brain-inspired computing, emerging technologies, and embedded systems. His research
has a special focus on cross-layer analysis, the modeling, design, and optimization of
computing and memory systems, and their integration in the Internet of Things and
smart cyber-physical systems. He is a Senior Member of the IEEE and a member of the
ACM, SIGARCH, SIGDA, SIGBED, and HiPEAC. He received the 2015 ACM/SIGDA
Outstanding New Faculty Award, six gold medals, and several best paper awards and
nominations at prestigious conferences. He served on the program committees of several
conferences and gave several invited talks, tutorials, and keynotes.

Keynote 4 16 :00 - 16 :45

Mega-Modeling and Model-Driven Performance Analysis of CPSoS
— Eugenio Villar, Grupo de Ingenieŕıa Microelectrónica Universidad de Cantabria

— Abstract : Model Based Design (MBD) has proven to be a powerful technology to ad-
dress the development of increasingly complex embedded systems. Beyond complexity
itself, challenges come from the need to target various execution platforms with dif-
ferent OSs and HW resources, even bare-metal, the increasing parallelism provided by
them and its increasing heterogeneity. An additional difficulty comes from the ten-
dency towards system applications in which the embedded system is only a piece of a
much complex, distributed system. In any case, appropriate solutions improving per-
formance, power consumption, cost, etc. have to be analyzed and selected. Addressing
these challenges require flexible design technologies able to support from a single-source
model its architectural mapping to different computing resources, of different kind and
in different platforms. Thanks the potential of MBD methods and tools they should
ensure flexibility and reusability. In this presentation, S3D, a UML/MARTE system
modeling methodology is proposed able to address the challenges mentioned above by
improving flexibility and scalability. This approach is illustrated and demonstrated on

4

a flight management system. The model is flexible enough to be adapted to different
architectural solutions with a minimal effort by changing its underlying model of Com-
putation and Communication (MoCC). Being completely Platform Independent, from
the same model it is possible to explore and generate various solutions on different
execution platforms.

— Biography : Prof. Eugenio Villar got his Ph.D. in Electronics from the University
of Cantabria long time ago. Since 1992 is Full Professor at the Electronics Techno-
logy, Automatics and Systems Engineering Department of the University of Cantabria
where he is currently the responsible for the area of HW/SW Embedded Systems De-
sign at the Microelectronics Engineering Group. His research activity has been always
related with system specification and modeling. His current research interests cover
system specification and design, MpSoC modeling and performance estimation using
SystemC and UML/MARTE of mixed-critical, distributed embedded systems. He is
author of more than 130 papers in international conferences, journals and books in
the area of specification and design of electronic systems. Prof. Villar served in several
technical committees of international conferences like the VHDL Forum, Euro-VHDL,
EuroDAC, DATE, VLSI-SoC, FDL, EuroMicro DSD and DAC. He has participated
in several international projects in electronic system design under the FP5, FP6 and
FP7, ITEA, Medea-Catrene, Artemis and ECSEL programs. He is the representative
of the University of Cantabria in the ECSEL.

Heuristic-aided Symbolic
Simulation for Trickle-based
Wireless Sensors Networks
Configuration

Boutheina Bannour and Arnault Lapitre

5

Heuristic-aided Symbolic Simulation for
Trickle-based Wireless Sensors Networks

Configuration
Boutheina Bannour, and Arnault Lapitre

CEA, LIST, Laboratory of Systems Requirements and Conformity Engineering
{boutheina.bannour,arnault.lapitre}@cea.fr

ABSTRACT
Wireless Sensor Networks (WSN) as parts of the so-called
Internet of Things (IoT) are facing the challenge of upgrading
their firmware very often, in particular when security flaws
are found. This large-scale operation can be remotely con-
ducted starting from frontier devices (or nodes) connected
to the internet, and gradually spread among the rest of the
network. The Trickle algorithm is an efficient well-known
algorithm for versioned information dissemination in WSN,
and is applicable for this kind of operations. The algorithm
when well configured, allows: i) the reduction of the number
of packets (messages) exchanged between devices to save
their batteries, and ii) a quick propagation of new firmware
versions to minimize periods during which the devices are
outdated. In this paper, we develop model-based symbolic
simulation for configuring Trickle-based WSN combined
with an exploration heuristic to cope with combinatorial be-
havior of the network many-nodes, while still being able to
highlight critical scenarios of outdated nodes’ situations. Our
simulation techniques are implemented in the tool Diversity,
which shows promising usability and first results.

ACM Reference Format:
Boutheina Bannour, and Arnault Lapitre. 2020. Heuristic-aided
Symbolic Simulation for Trickle-based Wireless Sensors Networks
Configuration. In Rapid Simulation and Performance Evaluation:
Methods and Tools (RAPIDO ’20), January 21, 2020, Bologna, Italy.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3375246.
3375255

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
RAPIDO ’20, January 21, 2020, Bologna, Italy
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7777-5/20/01. . . $15.00
https://doi.org/10.1145/3375246.3375255

1 INTRODUCTION
Context. Wireless Sensors Networks (WSN) allow remote
monitoring based on the data they continuously collect, cre-
ating a direct connection between the digital systems and the
physical world. They are components of typical applications
of Internet of Things (IoT) in connected vehicles, household
appliances, urban infrastructures, agriculture production, e-
healthcare, etc. WSN are composed of many small devices,
called nodes, that operate for long periods of time under the
constraint of low consumption of energy, provided by very
economical batteries. Like all IoT components, nodes connec-
tion to internet requires updating their firmware very often,
in order to strengthen their functioning and security, e.g.,
against cyber-attacks such as the Mirai malware and its 27
emerging variants that have been discovered until recently,
in 2019 [1]. The most recommended and easiest method of de-
ployment is to use nodes connectivity to propagate firmware
updates from some frontier nodes connected to the internet.
But nodes communicate via short-range radio connections,
and thus updates need to be gradually carried out from one
node to neighbours until they are widespread in the network.
This is reminiscent of the fact that the traffic must still be
controlled and well distributed in the network so as not to
exhaust those limited battery-powered nodes.

Motivation and related works. The Trickle algorithm [12,
14] continues to develop interest in low-power dissemination
of versioned information in WSN. This algorithm is provided
as a standard library in TinyOS [13] and Contiki [8], two
well-known firmware Operating Systems (OS) for WSN. In
addition, the Trickle algorithm is used in recently standard-
ized WSN protocols namely the Multicast Protocol for Low
Power and Lossy Networks (MPL) [9] and the IPv6 Rout-
ing Protocol for Low Power and Lossy Networks (RPL) [2].
The algorithm is an asset to the network traffic regulation
as it allows neighboring nodes to quickly exchange new in-
formation if they are not consistent, and then, when they
synchronize, suppress their transmissions until a new incon-
sistency is detected again. In a recent work [17], we have
experimented test scenarios generation from MPL based on

RAPIDO ’20, January 21, 2020, Bologna, Italy Boutheina Bannour, and Arnault Lapitre

sr-pairs coverage criterion 1: We have observed a strong
intertwining between the underlying (many) Trickle config-
uration(s) and the connectivity of the topology under test.
With regard to given Trickle settings, some outdated nodes’
situations have been more frequently observed when slightly
modifying the topology connections (and vise versa). The
algorithm is sensitive to the so-called redundancy constant
which rules node transmissions a bounded number of times
in case of inconsistency: since then, the node counts the
number of times it hears from its neighbours the same (re-
dundant) information as it holds, to stop the dissemination
when the bound is reached. The choice of the redundancy
constant, being global to all nodes, is somehow a tradeoff be-
tween reasonably distribute transmission load among nodes
and not leaving some nodes outdated for long periods of time.
It depends on the nature of applications and/or protocols,
which employ Trickle: E.g., MPL [9] recommends using small
values (values within 1-5) as it instantiates many Trickle in-
stances per node (used often in dissemination of fragmented
versioned firmware), and RPL [2] (used for routing purposes)
recommends higher values (default value 10). Trickle uses
two other bounds to dynamically adjust listening period
of nodes to learn information from their neighbours, those
are left as well to the appreciation of the expertise and/or
with respect to the targeted topology characteristics: E.g.,
MPL recommends a lower bound of 10 times the expected
connection-layer latency, usually corresponds to few millisec-
onds, and RPL suggests an upper bound of the order of few
hours, etc. Recent works [5, 7, 11, 16, 21] have also pointed
needs to carefully configure Trickle to benefit from its per-
formance on reducing the network traffic while still being
able to quickly reach an updated state of the network. Works
in [5, 7, 11, 16, 21] propose analytical modelling of Trickle
algorithm in order to study its performance in generic and/or
non-uniform topologies. In particular, authors in [7] show
that due to the unique global redundancy constant in Trickle,
nodes with reduced connectivity transmit more often. They
propose then a variant of Trickle relying on multiple local
redundancy constants, each is a function of the number of
neighbours of the node. All previously cited works use exten-
sive numeric simulation and OS-based testbed experiments
to validate their analyses.

Our approach and contribution. We propose symbolic ex-
ecution [10] techniques to configure timed behaviors of
many-nodes networks ruled by the Trickle algorithm. Unlike
numeric simulation, symbolic execution animates or virtu-
ally executes models or code for symbolic input parameters
rather than concrete values, which allows the exploration
of many behaviours within a compact search space. In fact,

1In order to achieve full sr-pairs coverage every paired send-receive events
must be executed at least once in testing [19].

each execution path is associated with logical constraints
on those input parameters computed at each execution step,
the so-called Path Conditions, those systematically identify
equivalence classes of concrete behaviors encoded by the
explored paths. We adopt a model-based approach in which
models are asynchronous products of communicating Sym-
bolic Timed Automata (STA) [20] over unbounded fifo-queue:
We provide a generic Trickle pattern (as an STA) which can
be re-used/tuned in modeling other applications or protocols
based on the algorithm. In general, the exploration of such
asynchronous models is quickly facing the combinatorial
explosion problem [6]. So, we propose to combine a random
search heuristic [3, 15] with nodes pairwise-connectivity
analyses to improve the simulation of Trickle configurations.
In particular, we show how those techniques can be used to
efficiently highlight outdated nodes’ situations, and hence
adjust Trickle settings accordingly. We use the model-based
symbolic execution tool Diversity [15] to implement and
experiment our contributions.

Outline. Section 2 gives the necessary preliminaries on
Trickle. Section 3 introduces our model-based symbolic sim-
ulation techniques for Trickle many-nodes networks, that we
have implemented in the Diversity tool. Section 4 introduces
our heuristic-aided configuration and evaluate it on different
Trickle configurations, and Section 5 concludes the paper.

n1

n2

ni−2

ni

ni+1

ni−1old version

firmware

bootloader fw
update

fw
update

fw
update

node
(sensor)

flash memory

frontier node
Internet

Figure 1: Updates in Wireless Sensors Network.

2 BACKGROUND ON TRICKLE
Trickle is a distributed algorithm that is executed by every
node and can be summarized as follows [12, 14]:

• each node maintains a current interval τ , a counter c
and a transmission time t in current interval τ ,

• global parameters to all nodes are k the redundancy
constant, τl (resp. τh) the smallest (resp. largest) value
for τ ,

• a node behaves according to following rules,

Heuristic-aided Symbolic Simulation RAPIDO ’20, January 21, 2020, Bologna, Italy

(1) at the start of a new interval the node resets its
timer and counter c and sets at random t to a value
in [τ/2, τ [,

(2) if the node receives a message consistent with the
information it holds, it increments c,

(3) when its timer reaches t, the node transmits the a
message carrying the information it holds to all its
neighbours only if c < k,

(4) when its timer expires at τ , it increases its interval
length by setting τ to min(2 · τ , τh) and starts a new
interval,

(5) when a node receives a message that is inconsistent
with its own information, then if τ > τl it sets τ to τl
and starts a new interval, otherwise it does nothing.

Each time an inconsistency is detected the current interval
τ is reset, i.e., assigned with τl , and then it is doubled up to
τh . When τ reaches τh it remains assigned with this value
until the next inconsistency occurs. In a lossless network, the
transmissions count per inconsistency is≈ loд(τh/τl): at most
one transmission per τ -interval, occurring exactly at t. As
illustrated in Figure 2, a node transmits only if its neighbours
are unlikely to be up-to-date, when c < k given c counts
receptions of consistent messages in the interval (k is global
to all nodes). Now, if c reaches k, i.e., c ≥ k, the transmission
at t is suppressed. We point out that the transmission time t
is chosen at random within [τ/2, τ [which imposes a listen-
only period (first half of τ) for all nodes. The randomness of
transmission time in favor of distributing the transmission
load between nodes in the interval (and hence energy cost).
When inconsistent information is received, small intervals
are considered again, starting with the smallest τl , therefore
nodes exchange quickly the information in their possession,
with the objective to quickly synchronize nodes’ information.

ni−2

ni−1

ni

ni+1

ττ /2start interval

c=0 c=1
c ≥ k : suppress transmission

t

k = 1

listen-only
period

time

Figure 2: Trickle suppression mechanism.

3 SYMBOLIC SIMULATION
Symbolic models. For the purpose of modeling timed behav-
ior of Trickle nodes, we will use the formalism of Symbolic
Timed Automata (STA) [20]. Those are defined based on
first-order logic and extend the well-known Timed Automata

(TA) [4] with time guards using data-dependant bounds on
clocks as being first-order terms (rather than being only
bounded by constant values as in TA), data guards on other
variables than clocks as first-order formulas, and updates
of variables by substituting them by first-order terms. For
instance, the transmission time will be constrained by the
first-order formula clk = t, where clk is a clock which im-
plements the Trickle timer, and t is indeed a data variable
in symbolic domain τ/2 ≤ t < τ , defined on its turn by the
data variable τ being doubled at each new Trickle interval,
. . .This increased expressiveness of TA allows for compact
models of (timed) behavior of Trickle-nodes as we will see
in the rest of the section.

As part of our contribution, we have implemented in Di-
versity STA, besides, we have equipped them with a sequen-
tial statement language so that a single execution step can
cover many intermediate computations. Those statements
can include guards (formulas built on system clocks and data
variables), communication actions involving systems ports
(reception and storage on variables of incoming terms, or
emissions of terms), and data variable updates (denoted by
classical assignments). Statements can also be built consider-
ing the following control primitives: sequence (;), condition
(if-statements) or counted-repetition (for-statements).

l1
clk ≤ t

τ := τl
newfresh(t)[
τ /2 ≤ t < τ

]
c := 0
Init !
{clk}

[
clk = t

][
c < k

]
Version ! myv

∅
l0

true
l2

clk ≤ τ

π1 ≡ (τl /1 ≤ t1 < τl) ∧ (z1 ≤ t1)
λ1 ≡ τ → τl , t → t1,
c → 0, clk → z1,
myv → myv0
Act1 ≡ Init !

ec0 ≡ (l0, true , λ0, z0, ; ; , sel f)

ec1 ≡ (l1, π1, λ1, z0 + z1, Act1, ec0)

ec2 ≡ (l2, π2, λ2, z0 + z1 + z2, Act2, ec1)
π2 ≡ π1 ∧ (z1 = t1) ∧ (z2 ≤ τl)
λ2 ≡ τ → τl , t → t1,
c → 0, clk → z1 + z2,
myv → myv0
Act2 ≡ Version ! myv0

λ0 ≡ τ → τ0, t → t0,
c → c0, clk → z0,
myv → myv0

Figure 3: Illustration of the symbolic execution of a Sym-
bolic Timed Automata (STA)

Figure 3 depicts a three-locations STA excerpt of the STA
modeling a behavior of a Trickle (given in Figure 4): its lo-
cations are l0 (the initial location), l1 and l2. Locations are

RAPIDO ’20, January 21, 2020, Bologna, Italy Boutheina Bannour, and Arnault Lapitre

associated with invariants as in timed automata, yet in STA
allow clocks to be bounded by first-order terms (being a data
variable or another composite term): the invariant of location
l0 is true , the duration to remain in l0 is unconstrained which
defines different initialization instants of the STA (nodes are
not synchronised), whereas, the invariant of location l1 (resp.
l2) is clk ≤ t (resp. clk ≤ τ) where the data variable t (resp.
τ) is used as a bound in the invariant.

Each transition is composed of a source state, a target
state, a sequential statement, and set of clocks to be reset.

Transition l0 → l1 is composed of the following state-
ments: it resets the Trickle interval to the smallest value τl
(assignment τ := τl); assigns t with a new fresh value (action
newfresh(t)); constrains this new value of t to be within the
second half of the τ -interval (guard τ/2 ≤ t < τ); resets
the redundancy counter c (assignment c := 0); specifies the
emission of an initialization signal to the environment on
port Init (abstracted by the communication action Init!); and
finally resets the clock clk which is used to constrain instants
at which Trickle timer events occur.

Transition l1 → l2 is composed of statements which en-
code the Trickle emission (communication action Version!myv)
exactly at moment when the chosen new value for t elapses,
which is measured since the clock clk has been reset by pre-
vious transition (guard clk = t). The transition is constrained
as well by counter c not reaching its bound (guard c < k), i.e.,
the count of redundant versions received from neighbours
is still less than k, the redundancy constant.

Symbolic execution. We suggest to use techniques of sym-
bolic execution [10] to simulate timed behavior of STA. Sym-
bolic execution consists in executing its transitions using
symbolic parameters (rather than concrete values) which
results in a set of reachable extended-locations that are de-
noted symbolically in the form of Execution Contexts (abbr.
EC). An EC ec≡(l, π , λ, θ ,Act,pec) is composed as follows:

(1) the reached location l that determines which transi-
tions can be executed next,

(2) a formula π , the so-called Path Condition (abbr. PC), ac-
cumulating all temporal and data constraints induced
by previously encountered guards and statements,

(3) a substitution λ associating terms over symbolic pa-
rameters to system variables,

(4) a sum of symbolic durations θ elapsed so-far since the
beginning of the execution,

(5) a sequence of communication actions Act ,
(6) an EC pec , called predecessor EC, giving access to the

EC from which ec has been built.

Symbolic execution of the excerpt STA is illustrated in
Figure 3. It allows reaching an EC ec1, the time spent in this
context is denoted by the symbolic duration z1. The time
elapsed so-far is z0 + z1 as the predecessor of ec1 is ec0, the

time spent in this latter context is denoted by z0. From the
definition of ec1, one can see as well that t is assigned with
a new symbolic parameter (λ1(t) = t1, initially λ0(t) = t0)
and that this value occurs in the second half of the current
interval τ (see sub-formula (τl/2 ≤ t1 < τl) of PC π1, with
λ1(τ) = τl). The other part (z1 ≤ t1) of PC π1 constrains
the duration z1 to remain in the location l1 by t1, which
corresponds to the first half of the current interval, i.e., the
listen-only period of the node at the end of which it transmits
its version.

The symbolic execution of a transition is computed in
three intermediate steps: i) statements, including guards,
are evaluated, ii) and then the set of clocks to be reset are
assigned with zero, iii) and finally since that, all clocks are
advanced of the same amount of time (denoted by symbolic
duration) which represents the time that will be spent in the
target location, and naturally the invariant of the location is
evaluated too.

The symbolic execution of l1 → l2 from ec1 results in an
EC ec2: it denotes that node transmits at the randomly cho-
sen time instant denoted by t1 (see sub-formula z1 = t1
of PC π2). The emission is also symbolically denoted by
Version!myv0, the emitted symbolic parameter (myv0) repre-
sent all possible values that can be assigned with myv at this
step of execution. The single clock clk has been advanced of
a symbolic duration since being reset by previous transition
(λ2(clk) = z1 + z2). We can see that on the difference of nu-
meric simulation a single evaluation by symbolic execution
captures many numeric executions, this because variables,
including clocks are assigned with constrained symbolic pa-
rameters (by the inferred PC), rather than concrete ones.

Models in the Diversity tool can be atomic (here an STA)
or compositional, with the possibility to define generic model
template that can be instantiated many times. Figure 4 de-
picts a template STA modeling the generic behavior of a
Trickle-node. Two excerpt transitions of the automaton have
been already discussed in details, overall the automaton faith-
fully implements the rules of the Trickle algorithm (see Sec-
tion 2). We use asynchronous communication mechanisms
provided by the tool, to specify message-passing between
nodes (over unbounded fifo-queues) where sending messages
is not blocking for the sender node. This is actually the case
when dealing with WSN kind of connectivity.

Scenarios are computed using the SE of the overall com-
positional model under interleaving unfolding. The latter
consists in executing a transition at a time, of one of the
component STA of the model and making a tuple of execu-
tion contexts (one per STA) evolve accordingly. This reached
tuple of contexts, that we call a System Context (abbr. SC)
allows us to characterize a scenario of messages exchanged
so-far. Intuitively, the evolution of the overall execution will

Heuristic-aided Symbolic Simulation RAPIDO ’20, January 21, 2020, Bologna, Italy

l1
clk ≤ t

τ := τl
newfresh(t)

[τ /2 ≤ t < τ]
c := 0
Init !
{clk}

l0
true

l2
clk ≤ τ

[clk = t]
[c < k]

Version ! myv

[clk = t]
[c ≥ k]

[clk = τ]
τ :=min(2 · τ , τh)

newfresh(t)
[τ /2 ≤ t < τ]

{clk}
macro analyse-version():

consistent := true ;
if(v , myv)

consistent := f alse ;
// my version is older then update
if(myv < v)

myv := v

[clk < t]
Version ? v

analyse-version()
[consistent]
c := c + 1

[clk < t]
Version ? v

analyse-version()
[¬consistent]
τ := τl

newfresh(t)
[τ /2 ≤ t < τ]

c := 0
{clk}

[t < clk < τ]
Version ? v

analyse-version()
[consistent]
c := c + 1

[t < clk < τ]
Version ? v

analyse-version()
[¬consistent]

τ := τl
newfresh(t)
[τ /2 ≤ t < τ]

c := 0
{clk}

l0_init

l1_rcv_consis_v

l1_rcv_inconsis_v

l2_rcv_consis_v
l2_rcv_inconsis_v

l1_snd_myv

l2_double_tau

l1_suppress_trans

Figure 4: Model of a Trickle-node behavior.

essentially concern the EC relating to the STA whose tran-
sition is being executed and results in a new SC. We omit
the illustration of an SC for readability sake, and we give the
corresponding execution as a sequence diagram in Figure 5.
The latter depicts an example of a scenario computed from a
four-nodes model (Figure 1, with i = 3).

In the sequence diagram of Figure 5, pairwise send/receive
events are of the same color. Every send/receive event is
labeled by its timestamp as a sum of symbolic durations.
We show as well parts of PC occurring on nodes to better
how those timestamps in particular are constrained. For
clarity, we have given versions numeric concrete values:
n1 is assumed to be the frontier node, it propagates a new
version (2), other nodes n2–n4 hold an older one (1). The
scenario shows that n4 is outdated (k = 1): Its only neighbor
who can send him versions, n3, suppressed its transmissions,
n3 has been updated with the new version together with n2
(by n1, see the broadcast events in green), then its counter
c is subsequently reset (c = 0); therefore when n3 receives
the same (new) version once again, from n2, it increments
its counter c (c = 1) that reaches k (see events in blue).

4 HEURISTIC-AIDED CONFIGURATION
Hit-Or-Jump heuristic. We ground our approach on the heuris-
tic Hit-or-Jump (HoJ) [3] which is implemented by the Diver-
sity tool [15]. The primary use of the heuristic is in Model-
Based Testing (MBT) approaches: It allows the selection of

Trickle

n1

n1

n2

n2

n3

n3

n4

n4

SCENARIO sc_91

((t_1 < tau_l) && ((tau_l / 2) <= t_1)
&& (z_5 <= t_1))

Init!@(z_0)

Init!@(z_0 + z_5)

Init!@(z_0 + z_5 + z_8)

Init!@(z_0 + z_11 + z_5 + z_8)

(((z_11 + z_14 + z_5 + z_8) == t_1)
&& ((z_11 + z_14 + z_21) <= t_3)
&& ((z_11 + z_14 + z_21 + z_5 + z_8) <= tau_l)
&& ((z_11 + z_14 + z_21 + z_8) <= t_2)
&& ((z_14 + z_21) <= t_4))

Version ! 2 @(z_0 + z_11 +
z_14 + z_5 + z_8)

Version ! 2 @(z_0 + z_11 +
z_14 + z_5 + z_8)

(((z_11 + z_14 + z_21 + z_8) < t_2) & (t_3 < tau_l)
&& ((z_11 + z_14 + z_21 + z_25) <= t_3)
&& ((z_11 + z_14 + z_21 + z_25 + z_5 + z_8) <= tau_l)
&& ((z_14 + z_21 + z_25) <= t_4) && ((tau_l / 2) <= t_3)
&& (z_25 <= t_3))

Version ? 2 @ (z_0 + z_11 +
z_14 + z_21 + z_5 + z_8)

(((z_11 + z_14 + z_21 + z_25) < t_3) && (t_5 < tau_l)
&& ((z_11 + z_14 + z_21 + z_25 + z_30 + z_5 + z_8) <= tau_l)
&& ((z_14 + z_21 + z_25 + z_30) <= t_4)
&& ((z_25 + z_30) <= t_3) && ((tau_l / 2) <= t_5)
&& (z_30 <= t_5))

Version ? 2 @(z_0 + z_11 +
z_14 + z_21 +
z_25 + z_5 + z_8)

(((z_25 + z_30 + z_36) == t_3)
&& ((z_14 + z_21 + z_25 + z_30 + z_36 + z_39) <= t_4)
&& ((z_25 + z_30 + z_36 + z_39) <= tau_l)
&& ((z_30 + z_36 + z_39) <= t_5) && ((z_36 + z_39) <= t_7))

Version ! 2 @(z_0 + z_11 +
z_14 + z_21 + z_25 +
z_30 + z_36 + z_5 + z_8)

Version ! 1 @(z_0 + z_11 +
z_14 + z_21 + z_25 +
z_30 + z_36 + z_39 +
z_5 + z_8)

(((z_30 + z_36 + z_39 + z_41) < t_5)
&& ((z_14 + z_21 +
z_25 + z_30 + z_36 + z_39 + z_41 + z_46) <= tau_l)
&& ((z_25 + z_30 + z_36 + z_39 + z_41 + z_46) <= tau_l)
&& ((z_30 + z_36 + z_39 + z_41 + z_46) <= t_5)
&& ((z_36 + z_39 + z_41 + z_46) <= t_7))

Version ? 2 @(z_0 + z_11 +
z_14 + z_21 + z_25 +
z_30 + z_36 + z_39 + z_41 +
z_5 + z_8)

(((z_25 + z_30 + z_36 + z_39 + z_41 + z_46) < tau_l)
&& (t_3 < (z_25 + z_30 + z_36 + z_39 + z_41 + z_46))
&& (t_5 < tau_l)
&& ((z_14 + z_21 + z_25 + z_30 + z_36 + z_39 + z_41 + z_46 + z_52) <= tau_l)
&& ((z_30 + z_36 + z_39 + z_41 + z_46 + z_52) <= t_5)
&& ((z_36 + z_39 + z_41 + z_46 + z_52) <= t_7)
&& ((tau_l / 2) <= t_5) && (z_52 <= t_5))

Version ? 1 @(z_0 + z_11 +
z_14 + z_21 + z_25
+ z_30 + z_36 +
z_39 + z_41 +
z_46 + z_5 + z_8)

Figure 5: Outdated node situation - sequence diagram gener-
ated by our tooling.

tests for complex communicating systems modeled by prod-
uct of automata, and hence are exposed to the well-known
state space explosion. The heuristic is a generalisation of
exhaustive search with random walks, and can be described
as follows (see lower part of Figure 6):

• The targeted coverage is defined by a re-specified se-
quence of transitions (or states), possibly non-consecutive
as it is difficult in general to guess a strict sequence
when it comes to automata product.

• The heuristic conducts a mini-exploration, of the model
which is limited in depth (local height), the latter is a

RAPIDO ’20, January 21, 2020, Bologna, Italy Boutheina Bannour, and Arnault Lapitre

sensible parameter of the heuristic (in case of combina-
torial explosion in width). During this mini-exploration,
the heuristic observes the coverage progress. If the
coverage is complete then the heuristic asserts, oth-
erwise it randomly selects a number of reached SCs
of maximal coverage (hit count) from which the next
mini-exploration is repeated. The mini-explorations
can be bounded (trials count), when all reached SCs
do not cover anything, a some of them can be chosen
at random to continue the exploration (jump count).

n1

n2

ni−2

ni

ni+1

ni−1

critical node

sequence of transitions to cover
(n1 .l0_init)(n1 .l1_snd_myv)(n2 .l0_init)
(n2 .l1_rcv_inconsis_v)(n1 .l2_double_tau)(n2 .l1_snd_myv)

. . .
(ni−1 .l1_snd_myv)(l0_init)ni (ni .l1_rcv_inconsis_v)

ni+1 .myv < n1 .myv
invariant

still outdated

frontier node

update

i.e. topology \ ni
has mininum
pairwise connectivity

strongly
connected

com
ponent

reach state
ni .c = k

(n1 .l0_init)

(n2 .l0_init)

(n1 .l0_init)

(n1 .l1_snd_myv) (n1 .l1_snd_myv)

(ni .l0_init)
(ni .l1_rcv_inconsis_v)

(ni .l0_init)

ec0

ecs |= ni+1 .myv < n1.myv
∧

θs − θr ≥ D
∧

ni .c = k

m
ini-exploration
localheight

hit count: 1

jump count: 2

trial#1

trial#3

trial#2

.

.

.

.

.

.

trials count: 3

dissem
ination

tim
e
θ
s −

θ
r

ecr

Figure 6: Heuristic search for outdated nodes.

Configuration aided by Hit-or-Jump. We use the heuristic
on the STA models that we have developed in Section 3. The
approach is guided by outdated nodes’ situations search.

We start with first values for Trickle parameters, run the
heuristic (a number of times), look for outdated nodes’ sit-
uations after a certain period of time (denoted by D). Then
we adjust those parameters and re-run the heuristic (again a
number of times) for those new values, if the number of out-
dated nodes decreases or those are found with lower success
rate of the heuristic, then we conclude that those parame-
ters are likely to be more efficient than the previous ones.
After some runs, if the number of outdated nodes does not
decrease or decreases slightly, we stop the search.

As glimpsed before, the heuristic attempts to cover a pre-
specified sequence of transitions which characterizes the
targeted behavior. Unlike in MBT where such sequences
often encode a coverage criterion, in our approach those
sequences are meant to highlight outdated nodes’ situations.
For this, we put in place a strategy to define those sequences
based on the connectivity of the topology. In favorable cases,
those sequences are sufficient to run our experiments and
highlight a reasonable set of outdated nodes’ situations. The
strategy is illustrated in Figure 6: a set of critical nodes2 is
identified. They are critical since if removed, the residual
topology graph will have minimum pairwise connectivity.
Updating a critical node will eventually trigger the update
of the nodes forming the involved (maximal) strongly con-
nected component, an outdated node can be among those.
The overall process is illustrated in Figure 6.

The sequence of Figure 6 denotes a chained update, start-
ing from frontier node n1 until reaching the critical node
ni assuming that nodes are initialized in a desynchronized
manner. The propagation of a new version from an interme-
diate node nj to its successor nj+1 (that is (nj .l1_snd_myv),
(nj+1.l1_rcv_inconsis), then (nj+1.l1_snd_myv)) requires
time elapsing of at least τl/2 in order for nj+1 to propagate
on its turn the new version at t of nj+1 chosen in the sec-
ond half of τl (τl/2 ≤ t < τl , see Figure 4). As time elapses
with big steps (τl/2), some nodes will change their locations,
and hence either send their versions (gossip) or double their
current interval. Typically, in the previous case nj will be
in location l2 (after its transmission) and inevitably has to
double its current interval (that is (nj .l2_double_tau)) in
order to reach again location l1.

Experimentation. We have created different networks com-
posed of resp. 4, 8, 16 nodes, the behavior of each node is
modeled by an STA of Figure 4. The objective is to investigate
dissemination of updates within a given D period of time,
by varying the value of the redundancy constant k . Using

2Recognition of a set of critical nodes (of given size) is a general graph
problem, roughly speaking, upon the removal of one of those nodes, the
strongly connected component to which it belongs, will be decomposed
into several ones [18].

Heuristic-aided Symbolic Simulation RAPIDO ’20, January 21, 2020, Bologna, Italy

our tooling3 (see screenshot Figure 7), we have profiled 100
heuristic runs for each D and k . Then, we have analyzed
frequency of execution scenarios which highlight outdated
nodes’ situations in the neighborhood of the critical nodes,
in the sens of Figure 6. We have observed that those are more
frequent as k is low (i.e. less than 2), same for D. On a PC
equipped with an Intel Core i7 processor (7th generation) and
32GB RAM, we have found scenarios with outdated nodes
in 30s (resp. 379s) average time, for k = 2 (resp k = 3) and
D = 3 (resp. D = 7.5). The symbolic simulation is combinato-
rial, but our heuristic helps us to control to a certain extent
the number of explored behaviors, the computation time is
consumed in large majority by SMT solvers (CVC4 or Z3 or
YICES) which are called to analyze the temporal constraints
(see Figure 5).

Figure 7: Tooling for editing STA model & profling Symbolic
Simulation.

5 CONCLUSION
We have developed an original approach for configuring
Trickle-based wireless sensors networks, the approach re-
lies on a model-exploration heuristic guided by the network
pairwise-connectivity. The heuristic runs on nodes’ timed
behavioral models, a bounded symbolic simulation involving
some randomness, with the objective to evaluate the effi-
ciency of Trickle configurations to quickly propagate new
versions among nodes. The symbolic simulation allows for
an efficient compact representation of the state space, on
the other hand the heuristic makes the search practicable
in the case of many-nodes network. First experiments show
that the heuristic concludes often, reporting on the num-
ber of outdated nodes for each configuration. In the future,
3Tooling available on ftp://ftp.cea.fr/incoming/y2k01/rapido_20, imple-
mented on top of the tool Diversity distributed open source by the project
Eclipse Formal Modeling (EFM),
https://projects.eclipse.org/projects/modeling.efm

we plan experiments under more complex network for ex-
ample with respect to critical nodes distribution, and also
consider dynamic networks where the number of nodes is
not constant.

REFERENCES
[1] Re-Emerging Mirai-like Botnets Are Threatening

IoT Security in 2019. http://www.iotforall.com/
mirai-botnets-threatening-iot-security-2019/.

[2] RPL: Ipv6 routing protocol for low-power and lossy networks, request
for comments: 6550. Technical report, Cooper Power Systems and
Cisco Systems and Stanford University, March 2012.

[3] R. Cavalli A., Lee D., Rinderknecht C., and Zaïdi F. Hit-or-jump: An
algorithm for embedded testing with applications to IN services. In
FORTE, 1999.

[4] R. Alur and D. Dill. A theory of timed automata. Journal Theoretical
Computer Science, 1994.

[5] M. Becker, K. Kuladinithi, and C. Görg. Modelling and simulating the
trickle algorithm. In MONAMI. Springer.

[6] D. Brand and P. Zafiropulo. On communicating finite-state machines.
J. ACM, 1983.

[7] T. Coladon, M. Vucinic, and B. Tourancheau. Multiple redundancy
constants with trickle. In PIMRC. IEEE, 2015.

[8] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In IEEE ICLCN,
2004.

[9] J. Hui and R. Kelsey. Multicast protocol for low-power and lossy
networks, request for comments: 7731. Technical report, Silicon Labs,
February 2016.

[10] C.King J. Symbolic execution and program testing. Communications
of the ACM, Volume 19, July 1976.

[11] H. R. Kermajani, C. Gomez, and M. H. Arshad. Modeling the message
count of the trickle algorithm in a steady-state, static wireless sensor
network. IEEE Communications Letters, 2012.

[12] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko. The trickle algorithm,
request for comments: 6206. Technical report, March 2011.

[13] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS: An Operating
System for Sensor Networks. Springer, 2005.

[14] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-regulating
algorithm for code propagation and maintenance in wireless sensor
networks. In Int. Symp. NSDI. USENIX Association, 2004.

[15] Arnaud M., Bannour B., and Lapitre A. An illustrative use case of
the DIVERSITY platform based on UML interaction scenarios. Electr.
Notes Theor. Comput. Sci., 2016.

[16] T. M. M. Meyfroyt. An analytic evaluation of the trickle algorithm: To-
wards efficient, fair, fast and reliable data dissemination. In WoWMoM.
IEEE.

[17] N. M. T. Nguyen, B. Bannour, A. Lapitre, and P. Le Gall. Behavioral
models and scenario selection for testing iot trickle-based lossy multi-
cast networks. In VVIoT@ICST. IEEE, 2019.

[18] N. Paudel, L. Georgiadis, and G. F. Italiano. Computing critical nodes
in directed graphs. ACM Journal of Experimental Algorithmics, 2018.

[19] C. Robinson-Mallett, R. M. Hierons, and P. Liggesmeyer. Achieving
communication coverage in testing. ACM Software Engineering Notes,
2006.

[20] Von Styp S., C. Bohnenkamp H., and Schmaltz J. A conformance testing
relation for symbolic timed automata. In FORMATS. Springer, 2010.

[21] M. Vucinic, M. Król, B. Jonglez, T. Coladon, and B. Tourancheau.
Trickle-D: High fairness and low transmission load with dynamic
redundancy. IEEE IoT Journal, 2017.

System Simulation with PULP
Virtual Platform and SystemC

Éder F. Zulian, Germain Haugou, Christian Weis, Matthias Jung and Norbert Wehn

13

System Simulation with PULP Virtual Platform and SystemC
Éder F. Zulian

TU Kaiserslautern
Germany

zulian@eit.uni-kl.de

Germain Haugou
ETH Zürich
Switzerland

haugoug@iis.ee.ethz.ch

Christian Weis
TU Kaiserslautern

Germany
weis@eit.uni-kl.de

Matthias Jung
Fraunhofer IESE

Kaiserslautern, Germany
matthias.jung@iese.fraunhofer.de

Norbert Wehn
TU Kaiserslautern

Germany
wehn@eit.uni-kl.de

ABSTRACT
Driven by performance, power and energy requirements compute
platforms evolved from single-core homogeneous into highly par-
allel heterogeneous architectures. These architectures use different
CPUs, GPUs, accelerators, interconnects, memories, etc., and target
diverse applications creating a vast design space. Moreover, ever-
growing security concerns leverage the adoption of open source
silicon designs and tools, specially those with collaborative research
and engineering efforts from industry and academia to develop and
maintain for the long term. In this context, RISC-V based solutions
are an outstanding choice and virtual platforms are essential for
a fast design cycle. However, simulation frameworks often do not
provide off-the-shelf interoperability hindering the reusability of
existing models.

In this paper, we present for the first time a coupling of the PULP
virtual platform, which provides manycore RISC-V accelerators in a
feature-rich simulation environment, with SystemC/TLM-2.0, a de
facto standard in industry that is also largely used in the academia.
Furthermore, we evaluate the coupling of simulation engines and
demonstrate its usefulness in a case study.

CCS CONCEPTS
• Computing methodologies → Discrete-event simulation;
Simulation environments; • Computer systems organization
→ Heterogeneous (hybrid) systems.

KEYWORDS
RISC-V, PULP, Virtual Prototyping, Heterogeneous Systems, System-
level Modeling, SystemC/TLM

ACM Reference Format:
Éder F. Zulian, Germain Haugou, Christian Weis, Matthias Jung, and Norbert
Wehn. 2020. System Simulation with PULP Virtual Platform and SystemC.
In Rapid Simulation and Performance Evaluation: Methods and Tools (RAPIDO

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RAPIDO ’20, January 21, 2020, Bologna, Italy
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7777-5/20/01. . . $15.00
https://doi.org/10.1145/3375246.3375256

’20), January 21, 2020, Bologna, Italy. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3375246.3375256

1 INTRODUCTION
Recently, Google and other founding partners from industry and
academia announced OpenTitan [10] the first open source sili-
con root of trust (RoT) project. According to its announcement,
OpenTitan will deliver a high-quality RoT design and integration
guidelines for use in data center servers, storage, peripherals, and
more. OpenTitan is based on RISC-V, hence it provides us with a
prominent example for the huge impact of the RISC-V ecosystem
on industry. Moreover, GAP8 [7] is another example from industry
that is a derivative from PULP [26] that originated in the academia.
The System-on-Chip (SoC) designed by GreenWaves targets edge
computing and Internet of Things (IoT) systems consisting of au-
tonomous energy-constrained devices. The SoC relies on the PULP
RISC-V architecture, it has nine RISC-V cores, I/O peripherals and a
hardware convolution computation engine specialized for use with
convolutional neural networks (CNNs) related applications.

Today’s huge diversity of applications, system heterogeneity,
performance and energy-efficiency requirements, along with a vast
number design choices, expose system-level architects to an ever-
growing complexity when developing compute platforms. In this
context, Virtual Platforms (VPs) are not only a valuable resource, but
also mandatory to: (1) Facilitate rapid research on all software and
hardware layers. (2) Manage the inherent complexity of contem-
porary system’s Design Space Exploration (DSE). (3) Accelerate the
design cycle, anticipate analysis, optimization, verification. More-
over, SystemC and TLM are largely used in academic research and
it is a de facto industry standard, which is successfully used by
leading companies to advance their products by means of VPs.

The purpose of this work, therefore, is to present the coupling of
GVSoC, the simulation engine of the PULP VP, with SystemC/TLM.
For the first time, researchers and industry can profit from models
provided by the PULP VP, such as manycore RISC-V accelerators
and several peripherals, in a SystemC simulation environment. The
coupling allows PULP VP components to be combined with Sys-
temC compatible models to form heterogeneous simulation frame-
works. Moreover, the source code developed for the coupling along
with artifacts, such as SystemC modules and scripts for automated
setup of prerequisites, are open source and committed to official
repositories of the PULP project. Furthermore, we believe that the

RAPIDO ’20, January 21, 2020, Bologna, Italy Éder F. Zulian, Germain Haugou, Christian Weis, Matthias Jung, and Norbert Wehn

interoperability of simulation engines not only increases their appli-
cation scope, but also facilitates further extensions while promoting
their use and long-term maintenance.

The rest of this paper is structured as follows: Section 2 discusses
related work. An overview of the PULP VP focused in its simulation
engine GVSoC along with SystemC/TLM-2.0 is provided in Section 3.
The coupling is explained in Section 4. Further, in Section 5 we
evaluate essential aspects of our work while demonstrating its
usefulness with case studies that can be used as entry point for
the creation of heterogeneous simulation frameworks. Section 6
concludes the paper.

2 RELATED WORK
A vast body of research has proposed a multitude of approaches
and resourceful solutions to create VPs. As expected, the trade-off
accuracy vs. simulation speed is a constant concern in virtually
all works. Moreover, considerable part of these works focus not
only on breakthrough innovations started from scratch, but also
on the integration, extension and reuse of existing solutions. We
summarize some recent achievements in the following.

The authors of [4] present an integrated virtual prototyping so-
lution called VPSim that promises exceptional performance, easy of
use and automation of modelling and exploration. The proposed VP
uses QEMU [1] linked to SystemC TLM-2.0 modules. Performance
is granted by using the TLM-2.0 specialized transport interface DMI
at the cost of accuracy, but the solution allows different accuracy
levels for specific regions of interest (ROIs). Similar approach is
presented by [15], where a processor model of a recent ARMv8
ISA is generated with a QEMU-based CPU emulator framework
called Unicorn [20]. The authors use SystemC to integrate the
processor model into a VP in combination with a few third party
SystemC/TLM peripherals from [27]. Temporal decoupling is used
to increase simulation performance.

Ptolemy [5] and FERAL [17] allow multiple models of computa-
tion (MoCs) in a hierarchical heterogeneous design environment.
Moreover, FERAL allows the integration of compiled/linkable tools
for which the source code is available with closed-source or non-
compiled frameworks. Different MoCs are also integrated in [21],
where a new approach for virtual prototyping of analog and mixed-
signal embedded (AMS) systems based on SysML is proposed. The
authors extract low-level cycle accurate prototypes from the high-
level abstraction models and present the integration of analog com-
ponents into a virtual prototyping framework. Another charac-
teristic of FERAL, also used by the Structural Simulation Toolkit
(SST) [22], is the use an intermediate software layer to bind simu-
lation components into an integrated environment. According to
its documentation, the SST was designed to explore highly con-
current systems where the ISA, microarchitecture, and memory
interact with the programming model and communications sys-
tem. Recently, a parallel simulation environment based on MPI
was added to the toolkit, what may counterbalance any overhead
generated by the middleware layer. Parallelization is a relevant
option for accelerating simulations that is also explored in [28]
that uses temporal decoupling and a parallel SystemC kernel called
SCope [29] to speedup simulations of a SystemC-based MPSoC plat-
form formed by a SystemC-wrapped Instruction Set Simulator (ISS)

together with peripherals. Moreover, further speedup is achieved
by skipping the simulation of processors in idle state.

An extendable translating instruction set simulator is presented
in [19]. The proposed framework does binary translation and im-
plements a plugin mechanism that allows to quickly include new
functionality whenever an interrupt is received, e.g., into the trans-
lation stage, the simulation loop, during accesses to the memory.
Moreover, the framework has special focus on virtual prototypes
written in SystemC/TLM and its plugins include tracing tools, Sys-
temC interfaces, peripherals and fault injection capabilities.

The authors of [25] create a heterogeneous VP which consists of a
SystemC-based GPU attached to the existing open source SystemC-
based framework SoCRocket [6]. Besides GPU, the proposed VP
supports the open source LEON CPU and GRLIB components. Ac-
cording to the authors RTL implementations are provided what
makes possible a feedback loop between simulation results into re-
alistic hardware models. Similarly, the PULP project provides open
source RTL implementations. In [16] a memory simulator called
NVMain is extended with a reference implementation of a new
SRAM cache and implementation of various latency optimizations
for die-stacked cache. In this work, SystemC/TLM models from
DRAMSys [14] build a memory subsystem used in a case study for
evaluation purposes.

The authors of [12] proposed and implemented a RISC-V based
virtual prototype in SystemC/TLM that provides detailed models of
a RISC-V core, an interrupt controller and essential peripherals that
can be used for system-level exploration. RISC5, an implementation
of a RISC-V ISA in gem5, was presented in [23]. According to its
authors, RISC5 is validated against performance data from the
Chisel C++ emulator and FPGA soft core and is shown to have
less than 10% error on several performance statistics. Moreover,
[23] was further evaluated and extended by [24]. Also in gem5, the
authors of [18] provided support to SystemC co-simulation. This
was a key step that allowed the reuse of openly available models
developed for more than a decade in joint effort of researchers and
industry and simulation workloads together with SystemC-based
models.

3 BACKGROUND
This section provides a brief overview of the PULP project along
with the PULP VP and SystemC/TLM-2.0 with focus on character-
istics that are relevant to this work.

3.1 PULP Project
PULP [26] is an open source parallel architecture. One of its con-
figurations has a main core and a main memory called Accelera-
tor DRAM connected to a cluster of RISC-V cores sharing a local
memory and using a DMA engine to transfer data between the
accelerator DRAM and the cluster internal memory. Tasks can be
offloaded to the PULP accelerator cluster. The RISC-V core(s) within
the accelerator that are assigned to the task uses a DMA engine to
transfer data between memories.

3.2 PULP Virtual Platform
The PULP Virtual Platform is part of the PULP project, hence it
evolves and is maintained along with the PULP ecosystem. The

System Simulation with PULP Virtual Platform and SystemC RAPIDO ’20, January 21, 2020, Bologna, Italy

simulation engine of the PULP VP is called GVSoC, which is devel-
oped in Python and C++ using a component-based approach. Each
component has client and server interfaces. Similarly to gem5 [2],
the instantiation and binding of all components is done in Python
while the models are written in C++. Python is used to control
the simulation but once it is running, the execution uses only C++.
The whole platform is a set of parametric models. Each target is
described by a JSON description of the architecture which is driving
the instantiation, connection and configuration of each component.

The execution model is using an event-driven approach. Any
activity in a model is simulated as a function call which executes
until completion. To correctly model frequency scaling, each model
is part of a clock domain and the model is scheduling its activity us-
ing cycles. An activity can be registered in the future by specifying
a number of cycles so that the model is not affected by a frequency
change. A Top Time Engine is responsible for scheduling the various
clock domains according to their activity. Time stubs are automati-
cally inserted when two components of two different clock domains
are bound together to apply timing conversions. Performance is
modeled by scheduling activities at a specific time. For example, the
function modeling an instruction will enqueue another activity two
cycles later to model the fact that the instruction took two cycles
to execute. Accuracy depends on properly timing the core pipeline
(data dependency, branch penalty and so on). The interconnects are
also timed so that they can properly model bandwidth and latency,
using an asynchronous protocol. A master can send multiple out-
standing requests and the slave can grant them and reply to them
asynchronously so that advanced behaviors can be modeled. This
approach resembles the TLM-2.0 approximately-timed (AT) coding
style with non-blocking transport interface.

3.3 SystemC & TLM
SystemC is a C++ class library and an industry standard defined in
the IEEE Standard for Standard SystemC®Language Reference Man-
ual [13] often used in combination with TLM. A robust and mature
proof-of-concept simulator is made openly available by Accellera
Systems Initiative. TLM has two main focuses: transaction-based
communication and interoperability of modules. A TLM transaction
comprises a collection of pin wiggles, hence it allows a substantial
reduction in the number of events that have to be handled by the
event-driven simulation kernel reducing the simulation time. Inter-
operability can be achieved for non-native SystemC/TLM models
with the use of wrappers, transactors, adapters and bridge compo-
nents.

4 COUPLING PULP VP AND SYSTEMC
In this section we explain the most relevant aspects of the coupling
of the PULP VP and SystemC/TLM-2.0.

An overview of the coupling is shown in Figure 1. The required
changes and new open source components created to this end are
detailed in the following.

4.1 Preliminary Aspects
The coupling is achieved by executing the Top Time Engine of GV-
SoC (the simulation engine of the PULP VP) as a SystemC thread
as shown in Listing 1, hence it is scheduled for execution by the

PULP
RISC-V

Accelerators

GVSoC
TLM-2.0
Bridge

Data pointer
Is write
Address
. . .
Flags

GVSoC Request

Request

Ack/Resp

TLM-2.0 AT
Interconnect

Bus

TLM-2.0
compatible

Target

Data pointer
Command
Address
. . .
Extensions

Transaction Object
(TLM generic payload + extensions)

Forward
Path

Backward
Path

Forward
Path

Backward
Path

Figure 1: Transaction objects are constructed on-demand in
the Bridge. The data pointer within a request is referenced
in the transaction avoiding the copy/movement of data.

Listing 1: Top Time Engine within a SystemC thread
1 SC_MODULE (gvsc_module) {
2 SC_HAS_PROCESS (gvsc_module) ;
3 gvsc_module (sc_module_name n , vp : : t i m e _ e n g i n e ∗ eng) :
4 sc_module (n) , eng ine (eng) {
5 SC_THREAD (run) ;
6 }
7 void run () {
8 eng−>run_ loop () ;
9 }

10 vp : : t i m e _ e n g i n e ∗ eng ine ;
11 } ;

SystemC simulation kernel. Moreover, at the beginning of a simu-
lation, during the transition from the Python configuration phase
to the C++ execution phase an initialization function is called by
the thread running the Top Time Engine to execute the elaboration
phase in which all GVSoC and SystemC modules are instantiated.
Subsequently, sc_start() is called.

Besides the Top Time Engine, other two components are used to
establish communication and integration of GVSoC and SystemC
components. They are: (1) The GVSoC TLM-2.0 Bridge, a transactor
responsible for the translation of GVSoC requests into TLM transac-
tions and vice versa. (2) The Approximately-Timed (AT) Interconnect
Bus, a memory mapped interconnect bus where any number of
TLM compatible components can be attached.

4.2 GVSoC Top Time Engine
To have a close interaction between GVSoC and SystemC schedulers,
GVSoC Top Time Engine is embedded in a SystemC thread as shown
in Listing 1. Every time this special thread is scheduled for execution
by the SystemC kernel, it executes all the activities scheduled for the
current simulation time, allowing modules from both sides to create
new events. Once no more activity has to be executed, it waits until
the simulation time is advanced by the SystemC simulation kernel
to the time of the next activity. It is possible that an external event
coming from the SystemC domain, for example, an external access,
creates an activity before the next scheduled one, in which case it
wakes up the GVSoC thread for proper treatment of the external
event. As shown in Listing 2, the Top Time Engine of GVSoC waits
for either an amount of time when the next activity is known and
internally scheduled or an activity that may happen before that
originated in the SystemC domain. It is also possible that GVSoC
scheduler has nothing to schedule and is just waiting for an event
(using the same mechanism) which is used to wake it up to execute
the new activity.

RAPIDO ’20, January 21, 2020, Bologna, Italy Éder F. Zulian, Germain Haugou, Christian Weis, Matthias Jung, and Norbert Wehn

Listing 2: Main changes in the GVSoC scheduler
1 while (1) {
2 i f (! f i r s t _ c l i e n t) {
3 i f (s t o p _ r e q | | l o c k e d)
4 break ;
5 / / Wait f o r e v e n t s from t h e SystemC domain
6 wai t (s y n c _ e v e n t) ;
7 } e l s e {
8 i n t 6 4 _ t now = (i n t 6 4 _ t) s c_ t ime_s tamp () . t o _ d o u b l e () ;
9 i n t 6 4 _ t ne_t ime = f i r s t _ c l i e n t −>n e x t _ e v e n t _ t i m e ;

10 v p _ a s s e r t (ne_t ime >= now , NULL , NULL) ;
11 / / Wait n e x t e v e n t o r an asynch e v e n t from SystemC
12 wai t (ne_t ime − now , SC_PS , s y n c _ e v e n t) ;
13 now = (i n t 6 4 _ t) s c_ t ime_s tamp () . t o _ d o u b l e () ;
14 i f (now == f i r s t _ c l i e n t −>n e x t _ e v e n t _ t i m e)
15 break ;
16 }
17 }

4.3 GVSoC TLM-2.0 Bridge
The GVSoC TLM-2.0 Bridge consists of a transactor component that
converts GVSoC requests into TLM transactions and vice versa.
Hence, it allows native GVSoC models to communicate with any
TLM-compliant component. The bridge is TLM-2.0 base protocol
compliant, hence it respects the exclusion rules defined by the
protocol. The approximately-timed coding style is adopted, there-
fore transactions are initiated in the forward path using the non-
blocking transport interface. Moreover, it honors timing annota-
tions and supports responses via both backward and return paths,
including early completion and implicit end request (END_REQ).

For the sake of illustration, in a typical scenario a memory access
request from the DMA engine is a few kilobytes in size, then it
relies in a DRAM controller to perform multiple memory requests.
In each request 64 bytes of data are exchanged between DRAM
controller and the DRAM through a 64-bit wide data bus in a burst
consisting of 8 beats, each beat 8 bytes. The GVSoC TLM-2.0 Bridge
breaks a memory access request into multiple parts adequate to
its immediate target. For that, it allocates new TLM transaction
objects on-demand using a memory manager, which contains a
pool of transaction objects for reuse. In the context of TLM, a
memory manager is a common/mandatory C++ class/object used
to avoid recurrent construction and deletion of transaction objects.
Moreover, the bridge uses TLM generic payload extensions to check
the integrity of transactions and the request they derive during the
communication process between PULP components modeled by
GVSoC and SystemC modules. Ignorable extensions are used as they
are transparent to other components allowing transactions to be
normally routed through any number of interconnect components
in their way to the target.

Table 1 shows the relevant fields of the GVSoC request along with
their equivalents in the TLM transaction. The is_write flag of the
GVSoC request is used to define the TLM command, read or write,
the size defines the number of parts a GVSoC request is split into.
Each of the parts is a TLM transaction. The data_length of TLM
transaction is a configuration that must fit requirements from the
target side. In order to avoid movement of large amounts of data, the
same data region pointed by the data pointer in a GVSoC request
is directly referenced by TLM transactions. The pointer to the base
of the data region is incremented with an offset relative to the part
of the GVSoC request a transaction corresponds to. Similarly, the
address field is reused and incremented by an offset. Flags are

Table 1: GVSoC requests and TLM transactions

GVSoC Request TLM Transaction Observations
is_write flag - Request type
size data_length 1:N
- command Defined by is_write
address address 1:N (base + offset)
data pointer data pointer 1:N (pointer + offset)
flags - -
- byte_enable -
- streaming_width -
- dmi_allowed -
- extensions pointer Integritycheck and routing

PULP
Accelerators

GVSoC
TLM-2.0 Bridge

AT
Interconnect Bus

AT
Target

GVSoC Request

Ack (ready for
next request)

BEGIN_REQ

Req. channel busy

END_REQ
BEGIN_REQ

Req. channel busy

END_REQ

BEGIN_RESP

Resp. channel busyBEGIN_RESP

Resp. channel busy END_RESP
END_RESPGVSoC Response

Figure 2: The Bridge and Interconnect Bus allow multiple
transactions in-flight and flow control in both directions.

GVSoC-specific, therefore they are not propagated. Other fields of
the TLM transaction such as byte_enable and streaming_width
are initialized to their default values and dmi_allowed is not used
in this work since the memory model design is approximately-
timed, therefore a higher accuracy level that is more suitable for
architectural exploration.

4.4 TLM-2.0 AT Interconnect Bus
The TLM-2.0 Approximately-Timed Interconnect Bus models a SoC in-
terconnect memory mapped bus. The bus is the main junction point
for the GVSoC Bridge and other TLM compatible modules/frame-
works. It allows multiple connections in both upstream and down-
stream directions with multi_passthrough sockets, hence the num-
ber of initiators and targets is defined dynamically based on socket
bindings. Moreover, it is designed to support address decoding func-
tionality, but in its current state of development there is “dummy”
decoding that serves as placeholder to be extended on-demand.

Figure 2 provides an illustration on how requests and responses
are propagated. The four-phases of the TLM non-blocking protocol
allows implementation of flow control in both directions.

5 EVALUATION
In the following we present experiments used to evaluate the func-
tionality of the coupling. Different SystemC/TLM compatible com-
ponents and simulators are used together to form a heterogeneous
simulation framework/test scenarios in which proper scheduling
and treatment of events is mandatory. Moreover, we use the open
source TLM-2.0 Base Protocol Compliance Checker to analyse one
million transactions that pass through our new components.

5.1 Heterogeneous Modeling Framework
As part of our evaluation we build the heterogeneous modeling
framework shown in Figure 3. The framework consists in a System-
C/TLM simulation environment where RISC-V accelerators from

System Simulation with PULP Virtual Platform and SystemC RAPIDO ’20, January 21, 2020, Bologna, Italy

Event-driven
RISC-V

Accelerator Cluster

PULP VP (GVSoC)

TLM-2.0 Bridge

Event-driven
Main Processing Unit

Gem5

TLM-2.0 Bridge

Bridge Automator
+ Address Adapter

Event-driven
TLM-2.0 Compliant
Memory Subsystem

DRAMSys

TLM-2.0 AT Interconnect Bus

Figure 3: Example of a heterogeneous modeling framework.
New components are highlighted in gray.

PULP (enabled by this work) are combined with other simulators,
namely DRAMSys [14] and gem5 [2]. An overview of the simulators
used along with open source components created to support the
coupling is presented in the following.

DRAMSys [14] is a flexible memory subsystem design space ex-
ploration framework that consists of models reflecting the DRAM
functionality, power consumption with a bind to DRAMPower [3],
temperature behaviour and modeling of DRAM cell data retention.
The framework provides models to build a complete memory sub-
system, such as arbitration module, elaborate memory controller
and multiple DRAM models. DRAMSys is particularly interesting
for it is an AT TLM-compliant framework, hence it can be used for
memory architectural DSE.

The gem5 simulator [2] is a modular platform for architecture
research, encompassing system-level architecture as well as pro-
cessor microarchitecture [9]. It provides models of diverse system
components including CPUs, buses, caches, DRAM controllers [11]
along with peripheral devices. RISC-V, x86, ARM, ALPHA and MIPS
are among the ISAs supported [8]. Morevoer we profit from the ac-
cumulated achievements of [18] to couple gem5 to our environment
and utilities provided by [30] facilitate the setup.

We create the Gem5 TLM Bridge Automator and an Address
Adapter. The former parses gem5 configuration files to proper in-
stantiate and initialize the key components provided by [18] such
as the Gem5SimControl object. Moreover, it instantiates the Address
Adapter component that can be used to convert memory addresses
originated in gem5 to the address range of the Interconnect Bus and
vice versa. Furthermore, we also provide a Memory Manager along
with an example TLM-2.0 target component.

To evaluate the coupling we execute different workloads in the
simulation framework shown in Figure 3. A RISC-V core within the
PULP accelerator cluster executes a memory access pattern first
writing values to the external DRAM (end point of the memory
subsystem) and later reading them back from the DRAM. At the
same time, gem5 executes Linux in a quad-core ARM based system
that uses the aforementioned DRAM as main memory. In this case
study the system simulated in gem5 and the RISC-V in the PULP VP
use separate memory address ranges, hence different areas of the

PULP
RISC-V
ACCEL.

GVSoC
TLM-2.0
BRIDGE

TLM-2.0
PROTOCOL
CHECKER

TLM-2.0
AT BUS

TLM-2.0
PROTOCOL
CHECKER

TLM-2.0
TARGET

Figure 4: TLM-2.0 Base Protocol Compliance Checker usage.
Listing 3: Instantiation, binding and config (106 checks).

1 void scdomain : : e l a b () {
2 b r i d g e = new g v s o c _ t l m _ b r (" br " , this , ACCEPT_DELAY_PS , BPA) ;
3 a t b u s = new ems : : a t b u s (" bus ") ;
4 pcbb = new t l m _ u t i l s : : t l m 2 _ b a s e _ p r o t o c o l _ c h e c k e r < >(" pcbb ") ;
5 p c b t = new t l m _ u t i l s : : t l m 2 _ b a s e _ p r o t o c o l _ c h e c k e r < >(" p c b t ") ;
6 pcbb−>set_num_checks (1 0 0 0 0 0 0) ;
7 pcbt −>set_num_checks (1 0 0 0 0 0 0) ;
8 b r i d g e −> i s o c k e t . b ind (pcbb−> t a r g e t _ s o c k e t) ;
9 pcbb−> i n i t i a t o r _ s o c k e t . b ind (a tbus −> t s o c k e t) ;

10 a tbus −> i s o c k e t . b ind (pcbt −> t a r g e t _ s o c k e t) ;
11 # i f d e f __VP_USE_SYSTEMC_GEM5
12 s t d : : s t r i n g c f g = g e t _ c o n f i g _ s t r (" t lm / gem5−c o n f i g ") ;
13 g5automator = new ems : : gem5_automator (" g5automator " , c f g) ;
14 for (auto adpt : g5auto−> a d a p t e r s)
15 adpt−> i s o c k e t . b ind (a tbus −> t s o c k e t) ;
16 # endif / ∗ __VP_USE_SYSTEMC_GEM5 ∗ /
17 # i f d e f __VP_USE_SYSTEMC_DRAMSYS
18 s t d : : s t r i n g sim = g e t _ c o n f i g _ s t r (" t lm / dramsys−c o n f i g ") ;
19 dramsys = new DRAMSys (" DRAMSys " , sim) ;
20 pcbt −> i n i t i a t o r _ s o c k e t . b ind (dramsys−> t S o c k e t) ;
21 # e l s e
22 t g t = new ems : : a t _ t a r g e t (" t " , ACCEPT_DELAY_PS , LATENCY_PS , BPA) ;
23 pcbt −> i n i t i a t o r _ s o c k e t . b ind (t g t −> t s o c k e t) ;
24 # endif / ∗ __VP_USE_SYSTEMC_DRAMSYS ∗ /
25 }

DRAM. Interactions with the memory subsystem consist of TLM
transactions.

Requests from the RISC-V core in the PULP VP domain are
translated into TLM transactions by the GVSoC TLM-2.0 Bridge and
forwarded to the TLM-2.0 AT Interconnect Bus. TLM transactions
coming from gem5, pass through our Gem5 TLM Bridge Automa-
tor, which instantiates the control module provided by gem5, and
through our Address Adapter before being forwarded to the TLM-
2.0 AT Interconnect Bus. Next, transactions from both domains go
through the TLM-2.0 AT Interconnect Bus to the memory controller
and to the DRAM, the last two implemented in DRAMSys.

Moreover, the third party simulators (gem5 and DRAMSys) are
compiled as libraries and linked with the PULP VP platform to
form a simulation environment on top of the SytemC simulation
kernel. The environment is used, not only to test the scheduling
capabilities of the modified simulation engine, but also as realistic
stimuli generator for testing communication.

As result we observe millions of transactions generated in both
domains properly routed through our new components to reach
their targets. Further, the Linux system in gem5 is responsive, the
values written to and read back from the memory by the RISC-V
core are compared and match.

5.2 TLM-2.0 Protocol Compliance Check
We adapt the case study described in 5.1 to use the open source TLM-
2.0 Base Protocol Compliance Checker, created by John Aynsley from
Doulos, to analyse at least 106 transactions. Figure 4 illustrates how
multiple instances of the protocol checker module are put in-line
between the hops. Instantiation, binding and base configuration of
relevant components are shown in Listing 3.

As result of our experiment, no protocol violations were ob-
served.

RAPIDO ’20, January 21, 2020, Bologna, Italy Éder F. Zulian, Germain Haugou, Christian Weis, Matthias Jung, and Norbert Wehn

Table 2: Execution Time (30 reps., Intel i7-4790 host CPU)

Memory Model Maximum Minimum Average
PULP-VP Native 12.563 s 11.907 s 12.168 s
SystemC/TLM-2.0 ATa 17.792 s 16.621 s 17.071 s
aImplies use of SystemC-based scheduling.

5.3 SystemC Simulation Overhead
To estimate the runtime overhead introduced by the coupling, which
results in the execution of the PULP VP on top of the SystemC
simulation kernel, we create equivalent simulation scenarios with
and without SystemC that we summarize in the following1.

A workload, which consists of a simple compute kernel for ma-
trix addition, manipulates data from a memory component accessed
via DMA engine. The workload iterates 2000 times over a 100× 100
matrix executing approximately 200 million instructions. Moreover,
8 RISC-V cores are used, hence there is also inter-core synchroniza-
tion as the DMA is managed by one core, and each core needs to
fetch a chunk of data to process (the DMA ensures coarse-grained
accesses to the memory). The RISC-V cores within the cluster work
on local scratchpad memory (128 KB) organized in 8 banks with
a logarithmic interconnect with an average contention ratio of
10%. The matrices operated are stored in a memory component
within the SoC, but outside the cluster, so there is a double buffer-
ing between the two memories for both input and output using the
DMA.

Two versions of the memory component are created: (1) Na-
tive PULP-VP memory module. (2) SystemC/TLM-2.0 target mem-
ory, that is a simple implementation but in AT coding-style, non-
blocking transport, four-phases protocol.

From our experimental results presented in Table 2 we observe
about 40% increase in the simulation time when using our coupling.

6 CONCLUSION
The PULP architecture is resourceful with high relevance in indus-
try and academia. The PULP Virtual Platform provides sophisticated
models of the RISC-V accelerators and peripherals that accumulate
considerable research/engineering efforts, hence the reuse of such
models is of substantial importance.

In this work we presented, for the first time, a coupling that
enables co-simulation of RISC-V accelerators cluster from the PULP
VP in a SystemC environment. To reduce the engineering efforts
in further couplings, all components created are open source and
available for download. Furthermore, we evaluated the coupling
and provided a case study that can be used as entry point for the
creation of further heterogeneous simulation frameworks.

As future work we aim at reducing the simulation time overhead
introduced by our coupling.

ACKNOWLEDGMENTS
This work was partially funded by the EU OPRECOMP project un-
der grant agreement No. 732631 (http://www.oprecomp.eu) and
also supported by the Fraunhofer High Performance Center for

1The interested reader may refer to [26] for further information on the PULP
architecture.

Simulation- and Software-based Innovation. We acknowledge the
support of Synopsys Inc..

REFERENCES
[1] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Pro-

ceedings of the Annual Conference on USENIX Annual Technical Conference (ATEC
’05). USENIX Association, Berkeley, CA, USA, 41–41. http://dl.acm.org/citation.
cfm?id=1247360.1247401

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[3] Karthik Chandrasekar, Christian Weis, Yonghui Li, Sven Goossens, Matthias
Jung, Omar Naji, Benny Akesson, Norbert Wehn, and Kees Goossens. 2011.
DRAMPower: Open-source DRAM Power & Energy Estimation Tool. http://
www.drampower.info.

[4] Amir Charif, Gabriel Busnot, Rania Mameesh, Tanguy Sassolas, and Nicolas
Ventroux. 2019. Fast Virtual Prototyping for Embedded Computing Systems
Design and Exploration. In Proceedings of the Rapid Simulation and Performance
Evaluation: Methods and Tools (RAPIDO ’19). ACM, New York, NY, USA, Article 3,
8 pages. https://doi.org/10.1145/3300189.3300192

[5] Johan Eker, Jorn W Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Lud-
vig, Sonia Sachs, Yuhong Xiong, and Stephen Neuendorffer. 2003. Taming het-
erogeneity - the Ptolemy approach. Proc. IEEE 91, 1 (2003), 127–144. http:
//chess.eecs.berkeley.edu/pubs/488.html

[6] Luca Fossati, Thomas Schuster, Rolf Meyer, and Mladen Berekovic. 2013.
Socrocket: a virtual platform for soc design. DAta System In Aerospace (DA-
SIA) (2013).

[7] GeeenWaves. 2018. GAP8. https://en.wikichip.org/wiki/greenwaves/gap8. Last
accessed 10 Nov 2019.

[8] gem5.org. 2011. gem5: Supported Architectures. www.gem5.org/Supported_
Architectures. Last accessed 07 Nov 2019.

[9] gem5.org. 2011. The gem5 Simulator. http://gem5.org/Main_Page. Last accessed
07 Nov 2019.

[10] Google. 2019. OpenTitan. https://opensource.googleblog.com/2019/11/opentitan-
open-sourcing-transparent.html. Last accessed 10 Nov 2019.

[11] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A.N. Udipi. 2014. Simulating
DRAM controllers for future system architecture exploration. In ISPASS 2014 -
IEEE International Symposium on Performance Analysis of Systems and Software.
201–210. https://doi.org/10.1109/ISPASS.2014.6844484

[12] V. Herdt, D. Große, H. M. Le, and R. Drechsler. 2018. Extensible and Configurable
RISC-V Based Virtual Prototype. In 2018 Forum on Specification Design Languages
(FDL). 5–16. https://doi.org/10.1109/FDL.2018.8524047

[13] IEEE. 2012. IEEE Standard for Standard SystemC Language Reference Manual.
IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005) (Jan 2012). https://doi.org/10.
1109/IEEESTD.2012.6134619

[14] Matthias Jung, Christian Weis, and Norbert Wehn. 2015. DRAMSys: A Flexible
DRAM Subsystem Design Space Exploration Framework. IPSJ Transactions on
System LSI Design Methodology 8 (2015), 63–74. https://doi.org/10.2197/ipsjtsldm.
8.63

[15] Lukas Jünger, Jan Henrik Weinstock, Rainer Leupers, and Gerd Ascheid. 2019. Fast
SystemC Processor Models with Unicorn. In Proceedings of the Rapid Simulation
and Performance Evaluation: Methods and Tools (RAPIDO ’19). ACM, New York,
NY, USA, Article 2, 6 pages. https://doi.org/10.1145/3300189.3300191

[16] Asif Ali Khan, Fazal Hameed, and Jeronimo Castrillon. 2018. NVMain Extension
for Multi-Level Cache Systems. In Proceedings of the Rapido’18 Workshop on Rapid
Simulation and Performance Evaluation: Methods and Tools (RAPIDO ’18). ACM,
New York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/3180665.3180672

[17] T. Kuhn, T. Forster, T. Braun, and R. Gotzhein. 2013. FERAL — Framework
for simulator coupling on requirements and architecture level. In 2013 Eleventh
ACM/IEEE International Conference on Formal Methods and Models for Codesign
(MEMOCODE 2013). 11–22.

[18] C. Menard, J. Castrillon, M. Jung, and N. Wehn. 2017. System simulation with
gem5 and SystemC: The keystone for full interoperability. In 2017 International
Conference on Embedded Computer Systems: Architectures, Modeling, and Simula-
tion (SAMOS). 62–69. https://doi.org/10.1109/SAMOS.2017.8344612

[19] Daniel Mueller-Gritschneder, Keerthikumara Devarajegowda, Martin Dittrich,
Wolfgang Ecker, Marc Greim, and Ulf Schlichtmann. 2017. The Extendable Trans-
lating Instruction Set Simulator (ETISS) Interlinked with an MDA Framework
for Fast RISC Prototyping. In Proceedings of the 28th International Symposium on
Rapid System Prototyping: Shortening the Path from Specification to Prototype (RSP
’17). ACM, New York, NY, USA, 79–84. https://doi.org/10.1145/3130265.3138858

[20] A. Q. Nguyen and H. V. Dang. 2015. Unicorn: Next Generation CPU Emulator
Framework. https://www.unicorn-engine.org/. Last accessed 07 Nov 2019.

System Simulation with PULP Virtual Platform and SystemC RAPIDO ’20, January 21, 2020, Bologna, Italy

[21] Rodrigo Cortés Porto, Daniela Genius, and Ludovic Apvrille. 2019. Modeling
and Virtual Prototyping for Embedded Systems on Mixed-Signal Multicores.
In Proceedings of the Rapid Simulation and Performance Evaluation: Methods
and Tools (RAPIDO ’19). ACM, New York, NY, USA, Article 4, 7 pages. https:
//doi.org/10.1145/3300189.3300193

[22] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. Weston,
R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls, and B. Jacob. 2011. The Structural
Simulation Toolkit. SIGMETRICS Perform. Eval. Rev. 38, 4 (March 2011), 37–42.
https://doi.org/10.1145/1964218.1964225

[23] Alec Roelke and Mircea R Stan. 2017. Risc5: Implementing the RISC-V ISA in
gem5. In First Workshop on Computer Architecture Research with RISC-V (CARRV).

[24] Robert Scheffel. 2018. Simulation of RISC-V based Systems in gem5. Master’s
thesis. Technische Universität Dresden.

[25] Patrick Siegl, Rainer Buchty, and Mladen Berekovic. 2016. Towards Bridging
the Gap Between Academic and Industrial Heterogeneous System Architecture
Design Space Exploration. In Proceedings of the 2016 Workshop on Rapid Simulation

and Performance Evaluation: Methods and Tools (RAPIDO ’16). ACM, New York,
NY, USA, Article 4, 6 pages. https://doi.org/10.1145/2852339.2852343

[26] PULP Team. 2013. PULP Platform: Open hardware, the way it should be! https:
//www.pulp-platform.org/. Last accessed 10 Nov 2019.

[27] Jan Henrik Weinstock. 2018. Virtual Components Modeling Library. https:
//github.com/janweinstock/vcml. Last accessed 07 Nov 2019.

[28] Jan Henrik Weinstock, Rainer Leupers, and Gerd Ascheid. 2017. Accelerating
MPSoC Simulation Using Parallel SystemC and Processor Sleep Models. In Pro-
ceedings of the 9th Workshop on Rapid Simulation and Performance Evaluation:
Methods and Tools (RAPIDO ’17). ACM, New York, NY, USA, Article 2, 6 pages.
https://doi.org/10.1145/3023973.3023975

[29] J. H. Weinstock, C. Schumacher, R. Leupers, G. Ascheid, and L. Tosoratto. 2014.
Time-decoupled parallel SystemC simulation. In 2014 Design, Automation Test in
Europe Conference Exhibition (DATE). 1–4. https://doi.org/10.7873/DATE.2014.204

[30] Éder F. Zulian. 2017. gem5.TnT: Tips and tricks to make your life easier when
dealing with gem5. https://github.com/tukl-msd/gem5.TnT.

Static/Dynamic Real-Time Legacy
Software Migration - A
Comparative Analysis

Irune Yarza, Mikel Azkarate-Askatsua, Peio Onaindia, Philipp Ittershagen, Kim Grüttner and
Wolfgang Nebel

21

Static/Dynamic Real-Time Legacy Software Migration – A
Comparative Analysis

Irune Yarza
Mikel Azkarate-askatsua

Peio Onaindia
iyarza@ikerlan.es

mazkarate@ikerlan.es
ponaindia@ikerlan.es

Ikerlan Technology Research Centre,
Dependable Embedded Systems Area

Arrasate-Mondragón, Spain

Philipp Ittershagen
Kim Grüttner

philipp.ittershagen@offis.de
kim.gruettner@offis.de

OFFIS - Institute for Information
Technology

Oldenburg, Germany

Wolfgang Nebel
nebel@informatik.uni-oldenburg.de

C.v.O. Universität Oldenburg
Oldenburg, Germany

ABSTRACT
Evolution to next generation embedded systems is shortening the
obsolescence period of the underlying hardware. As this happens,
software designed for those platforms (a.k.a., legacy code), that
might be functionally correct and validated code, may be lost in
the architecture and peripheral change. As embedded systems of-
ten have Real-Time (RT) computing constraints, the legacy code
retargeting issue directly affects RT systems. Binary translation
techniques have been widely applied for legacy code migration.
However, there are just a few works that consider RT legacy code.
Therefore, this paper presents a static and a dynamic binary mi-
gration approach (based on QEMU and Rev.ng respectively) and
analyzes and compares their suitability as RT code migration solu-
tions. The comparison shows that among the proposed solutions,
the static is the most appropriate for short-running RT legacy code,
since it ensures lower translation overhead and a more determin-
istic timing behavior. Instead, the dynamic approach might be a
suitable solution for RT legacy code with long periods (over 0.01 s)
and mainly composed of complex floating point computations, since
the dynamic translation and optimization overhead is not that sig-
nificant on long-running benchmarks and the static translation
implies a great slowdown on benchmarks containing floating point
operations.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks → Network reliability.

KEYWORDS
binary translation, legacy code, real-time systems, retargeting
ACM Reference Format:
Irune Yarza, Mikel Azkarate-askatsua, Peio Onaindia, Philipp Ittershagen,
Kim Grüttner, and Wolfgang Nebel. 2020. Static/Dynamic Real-Time Legacy
Software Migration – A Comparative Analysis. In Rapid Simulation and

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
RAPIDO ’20, January 21, 2020, Bologna, Italy
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7777-5/20/01. . . $15.00
https://doi.org/10.1145/3375246.3375257

Performance Evaluation: Methods and Tools (RAPIDO ’20), January 21, 2020,
Bologna, Italy. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3375246.3375257

1 INTRODUCTION
Companies within the embedded systems industry are facing a
relentless demand for increasingly stringent requirements such as
better performance, increased dependability, and energy efficiency,
while offering a cost-effective product within a reduced time-to-
market. This transition to next generation embedded systems is
being encouraged by the rapid development of computing archi-
tectures. As a consequence, the obsolescence period of embedded
systems is being shortened and there is a need to deal with legacy
code. Legacy code is characterized by some particular properties: it
usually runs on obsolete Hardware (HW) which is slow and expen-
sive to maintain [13], uses customized and deprecated toolchain(s),
has no or outdated documentation [11], and it is essential for the
company [2] since it comprises business knowledge [12].

Due to the fact that classical process models focus on the develop-
ment stage of software life-cycle instead of operation-maintenance
stages, the process of updating legacy systems is usually complex,
error-prone, time-consuming and requires high cost investment. In
response to this problem, research efforts have provided several
solutions. Nonetheless, when it comes to legacy software migration,
Binary Translation (BT) appears to be a standard approach, as the
binary that runs on the legacy HW can be ported to a new HW
platform without a considerable expense of time, effort and money.

Although BT has been successfully applied for legacy software
migration, it is necessary to consider that when dealing with RT
legacy code migration, not just the functional properties, but also
the timing behavior has to be preserved. To the authors knowledge,
Cogswell [4] and Heinz [7] are the only ones who considered timing
on their proposed retargeting solutions. However, they have limita-
tions regarding their portability. Therefore, industry still needs a
low-overhead embedded RT software retargeting solution that can
be easily ported to different source and target architectures.

In the direction to solve this problem, the overall goal of this re-
search line is to enhance the latest low-overhead machine-adaptable
static/dynamic BT tools with the ability to preserve the timing be-
havior on the translated binary. This will enable the migration of
RT embedded legacy code to a new HW platform with guaranteed

RAPIDO ’20, January 21, 2020, Bologna, Italy Yarza, et al.

RT performance. To this end, two approaches were considered: (1)
a dynamic approach based on Quick EMUlator (QEMU) [1] and (2)
a static approach based on Rev.ng [5].

As a first step on the research, in a previous publication [15] we
analyzed the suitability of QEMU, for its use in a RT property con-
serving retargeting process. In the same vein, this article analyzes
and compares the suitability of the static and dynamic approaches
(on a chosen test/evaluation set-up) for their use in a RT property
conserving retargeting process. Therefore, the main contribution
of this paper is the construction of a test environment to check
whether is better to choose a static or a dynamic approach to port
a particular RT legacy binary to a new architecture being able to
reproduce the timing behavior on the legacy Instruction Set Ar-
chitecture (ISA). The detailed technical contributions of this paper
are:

• A survey on existing static and dynamic code translation
techniques heeding portability, embedded systems or RT
legacy code.

• A description of the static and dynamic RT legacy code mi-
gration approaches.

• A feasibility study and comparative analysis of the described
static and dynamic RT legacy code migration solutions.

The remainder of this paper is organized as follows. An overview
of related work in the area of machine-adaptable static and dy-
namic code translation techniques for embedded systems is pro-
vided in Section 2. Then, Section 3 presents the proposed solution
and describes the static and dynamic approaches considered on
this research for RT legacy code migration. In order to perform a
feasibility study of the proposed approaches, Section 4 describes the
construction of a test framework with means for high-resolution
execution time measurement of periodically triggered software.
The obtained experimental results are thus evaluated on Section 5.
Finally, Section 6 gives an outlook on future work and a conclusion.

2 RELATED WORK
BT techniques have been widely studied and developed in the last
decades. Table 1 provides a summary of the related work reviewed
in [15]. Whereas this section analyzes the related work with a focus
on aspects such as portability, and RT legacy code and system-level
code support. Reviewed work and this section

Table 1: Related work summary. Cross-platform BT tools
are analyzed according the following four aspects: static/-
dynamic translation, portability, and RT legacy code and
system-level code support.

Name Static/Dynamic Machine-adaptable RT legacy User-/System-level
Code

TIBBIT [4] Static - ✓ System-level
Heinz [7] Static - ✓ System-level
UQBT [3] Static Source & Target - User-level

UQDBT [10] Dynamic Source & Target - User-level
QEMU [1] Dynamic Source & Target - User- & System-level

DisIRer [8] Static Target - User-level
CrossBit [14] Dynamic Source & Target - User-level

Rev.ng [5] Static Source & Target - User-level
LLBT [9] Static Target - User-level

Development cost is one of the main concerns when develop-
ing a binary translator, since the implementation of such a sys-
tem from scratch requires great effort. So given that BT tools
are highly dependent on the source and target architectures, re-
searchers adopted the general approach of portable compilers,
where machine-dependent and machine-independent concerns are
separated, to provide a machine-adaptable binary translator. The
first machine-adaptable solution, UQBT [3], supports multiple source
and target machines by using specifications that describe the ISA
and Operating System (OS). Unlike UQBT, most machine-adaptable
solutions provide multiple front-ends and benefit from a retar-
getable compiler to provide support for multiple target ISA.

When dealing with time sensitive code migration, not just its
functional behavior, but also the timing behavior of time critical
tasks has to be preserved. From the related work, just [4] and [7]
presented a migration path for RT legacy software. The former,
proposes a instruction level annotation approach that describes the
amount of time required to execute the block on the source proces-
sor. This way a virtual clock is provided to the run-time system that
compares its value to the target clock and enforces an equivalent
timing behavior. This approach is efficient for simple architectures
where the execution time of each instruction is predictable. The
latter, implements static temporal barriers to reduce the runtime
overhead of the delay computation. Based on a Worst Case Ex-
ecution Time (WCET) analysis tool a set of delay constants are
precomputed for each program point and according to the program
context the appropriate value is selected at runtime.

Embedded systems often contain a significant amount of low-
level code dedicated to control either processor integrated or ex-
ternal devices (e.g. Analog-to-Dygital Converter (ADC); serial, Eth-
ernet or CAN controller; sensor/actuator), also known as system-
level code. However, most of the approaches on the State of The Art
(SOTA) propose migration solutions for user-level code, where
the underlying OS’s Application Programming Interface (API) ab-
stracts the low-level code from the application. The approaches
presented in [4] and [7] support system-level binaries, whereas,
QEMU that was first designed for Linux machine emulation, now
supports also system-level code.

3 RT LEGACY CODE MIGRATION
In order to provide a migration path to RT legacy software, two
approaches have been considered: a dynamic approach based on
QEMU [1] machine emulator and a static approach based on Rev.ng
[5] binary instrumentation framework. The following subsections
describe the characteristics of legacy system to be ported and
present the assumptions and current constraints of the proposed
migration solution. The proposed static and dynamic migration
approaches are then described in detail, setting the focus on how
each of the tools performs the BT process and how each of them
overcomes the main portability aspects.

3.1 Legacy System
The left side of Figure 1 depicts the legacy system architecture,
which follows the typical pattern of a reactive control system. The
application is periodically triggered (at 𝑡0, 𝑡1, ...) to read new data
from the sensors and update the actuators after a period of time

Static/Dynamic Real-Time Legacy Software Migration – A Comparative Analysis RAPIDO ’20, January 21, 2020, Bologna, Italy

(𝑑𝑡). For an appropriate behavior of the system under control, the
duration of the application (𝑑𝑡) must be below the execution period
(𝑡𝑛+1 − 𝑡𝑛). Moreover, every action on the legacy application that
implies information exchange (e.g. read/write from/to Input/Output
(I/O) device buffer or shared variables) is also likely to be timing
critical.

Figure 1: Runtime architecture of RT legacy code running on
the legacy system (left hand), dynamic approach (middle),
and static approach (right hand).

3.2 Assumptions and Constraints
The legacy code block that needs to be ported, is treated as a gray
box that is being reused with little knowledge of its implementation.
The source code is available, however, there is a preference to keep
it unmodified due to possible unfamiliarity with the code and to
increase the usability of the approach.

The current proposal only considers applications that have man-
ually adapted I/O accesses to the new HW platform and do not
make use of any HW timer (i.e. we currently only consider pure
computational applications and do not consider I/O virtualization
between the legacy and new HW platform). Moreover, the current
approaches provide means to implement the periodic execution
loop, but do not yet support time enforcement at a finer granularity.
These constraints will be lifted in future work.

3.3 Dynamic Approach
The dynamic approach takes advantage of QEMU [1] to translate
legacy code on run-time. As I/O and timer virtualization is not
supported, in order to access the host timer and implement a pe-
riodic execution loop (without re-launching QEMU), the legacy
application and QEMU’s source code have to be adapted before
translation. The adapted legacy application is then compiled for the
legacy processor and runs on top of adapted QEMU. The translator,
is launched on top of a minimal Linux distribution, which has been
configured using the PREEMPT_RT patch 1. The adapted QEMU

1The main purpose of PREEMPT_RT patch is to improve the RT behavior on Linux by
reducing the kernel’s scheduler latency and response time. Moreover, PREEMPT_RT
achieves a more deterministic Linux environment without the need for a specific API.

is launched with the highest allowed priority 2. In the center of
Figure 1 the described dynamic approach run-time architecture is
shown.

The following subsections describe how the legacy application
is adapted, which is QEMU’s translation process and how QEMU’s
source code is adapted to reach our goal.

3.3.1 Adapt legacy application. In the legacy application, I/O ac-
cesses are replaced with I/O variables and a particular approach is
followed to periodically launch the application. An application con-
tainer is defined, which initializes state variables (as it is done in the
legacy application) and sets an infinite execution loop. Inside this
loop, first an empty function call is inserted3, start_period(), that
will allow the identification of the period start point from QEMUś
translation process. Then, input variables are updated (from csv
file), the legacy application’s behavioral part is executed in a run-to
completion manner and the content of output variables is writ-
ten back (to csv file). Finally, an empty function call is inserted,
end_period(), to identify the end of the period from QEMU’s
translation process. Using empty function calls to annotate the
legacy application we ensure that there is a branch in the code,
consequently this instructions will be the first ones in their corre-
sponding Translation Block (TB).

3.3.2 QEMU. The core element in QEMU is its code generator,
Tiny Code Generator (TCG), which is responsible for the dynamic
translation of target source code into host machine code. As a
machine-adaptable Dynamic Binary Translation (DBT), TCG adopts
the general approach in portable compilers. Therefore, the source
code TBs are first translated into tiny code instructions, a machine
independent Intermediate Representation (IR), and then this IR code
is further translated into target machine code. Once translated, the
TBs are stored in the code cache to be reused in future runs. TB
caching reduces translation overhead since the time spent on code
translation is reduced. For the sake of simplicity, when the code
cache overflows, all stored TBs are removed. Moreover, to avoid
returning control from the code cache to the emulation manager
and back again to the code cache, QEMU chains consequentially
executed TBs. As an example, after the execution of TB1, as there
was no chaining, execution returns to the emulation manager. In
that case, the next TB, TB2, has to be found, generated (if target
machine code for this TB is not available), executed and chained to
TB1. This way, the next time TB1 is executed TB2 will follow the
execution without returning control to the emulation manager.

Figure 2 illustrates in a flow diagram QEMU’s run-time be-
havior. Execution starts, and the first step is to set-up the Vir-
tual Machine (VM) environment according to its specifications
(e.g., number of CPUs, RAM size and available devices). Then,
CPU execution starts with cpu_exec() function, referred to as
the ’main execution loop’. Inside this execution loop, the first step
is to handle the interrupts if any. Afterward, tb_find() function
searches the next TB according to the current Program Counter
(PC) value. If no TB is found, target machine code is generated
through tb_gen_code() function, which subsequently call func-
tions gen_intermediate_code() to translate source code into tiny
2The highest allowed priority is 98, since PREEMPT_RT uses 99 as the priority for the
kernel task sets and interrupt handler.
3An empty function call is a call to a function whose body is empty.

RAPIDO ’20, January 21, 2020, Bologna, Italy Yarza, et al.

Figure 2: QEMU’s DBT flow diagram.

code instructions and tcg_gen_code() to convert intermediate
code into target machine code. After target machine code has been
generated, the TB is stored in the code cache, tb_jmp_cache, at
an index found by tb_jmp_cache_hash_func(). The generated/-
found TB is then chained to the previous TB, tb_add_jump(), to
avoid a context switch in a following run. Finally, translated code
execution continues through cpu_loop_exec_tb() function.

3.3.3 Adapt QEMU. In order to establish the periodic execution
loop, apart from the legacy application, QEMU’s source code also
has to be adapted in such a way that it identifies the annotations
(empty function calls) in the legacy application and implements
the periodic loop. Figure 3 illustrates in a flow diagram the run-
time behavior of the adapted QEMU. QEMU identifies TBs with
the PC value of the first instruction in the block. Since we anno-
tated the legacy application with empty function calls, we ensured
that these instructions will be the first instruction in the TB. So, if
the generated/found TB corresponds to the annotation PC value
(start_period_pc() or end_period_pc()) an auxiliary code is inserted
that, based on Linux high resolution timers, gets the start/end time
(saved in pStart_dyn or pEnd_dyn), measures the duration, com-
pares it with the period and waits until they are equal. However, as
QEMU chains consequent TBs, start and end TBs would be chained
to previous TBs and it would not be possible to detect them. So,
it is necessary to ensure that these TBs are never chained to the
previous one.

3.4 Static Approach
The static legacy code migration approach employs Rev.ng [5], to
translate a statically linked Linux binary into equivalent target
machine code. As I/O and timer virtualization is not supported,
the legacy application has to be adapted. First of all, accesses to
I/Os are replaced with I/O variables. Then, an application container

Figure 3: QEMU’s DBT flow diagram adapted to establish the
periodic execution loop.

is defined, which initializes the state variables (as it is done in
the legacy application) and creates a periodic execution loop that
contains the adapted legacy application’s behavioral part which
is executed in run-to completion mode. The application container
which includes the legacy code is compiled using a Linux toolchain
for the legacy architecture. The statically generated binary is then
translated off-line, before run-time. Once translated, the new binary
runs with priority 98 (highest allowed) on top of a minimal Linux
distribution that has been configured with the PREEMPT_RT patch.
On the right hand of Figure 1 the run-time architecture of the static
migration approach, as it has been described, is shown.

3.4.1 Rev.ng. Rev.ng is a binary analysis framework whose core
element is, Revamb Static Binary Translation (SBT) tool, which
combines the benefits of QEMU, with those of Low Level Virtual
Machine (LLVM). LLVM is a compilation framework that provides
source and target independent optimization support as well as
resources for multiple machine code generation. The main compo-
nents of LLVM’s architecture are: (1) the front-ends, which translate
source code in a variety of languages into LLVM IR. Clang, a C,
C++ and Object-C front-end, is the one that has received the most
attention; (2) Its IR, the core element in LLVM, a target-independent
low-level programming language; (3) the Pass Framework, that is
in charge of IR to IR transformation, most of the times seeking
for code optimization and/or analysis; and (4) the back-end, which
supports machine code generation for multiple instruction sets.

Rev.ng currently supports static ARM, MIPS and x86-64 Linux
binaries as input and can generate machine code for X86-64 output
architecture. However, even if the current tool suite supports just a
few input/output architecture combinations, the fact that it is based

Static/Dynamic Real-Time Legacy Software Migration – A Comparative Analysis RAPIDO ’20, January 21, 2020, Bologna, Italy

on QEMU and LLVM makes Rev.ng adaptable to other source/target
architectures supported by QEMU 4 and LLVM 5 respectively.

As already mentioned, the core element in Rev.ng is its SBT tool.
Revamb parses the statically linked Linux binary and uses QEMU’s
TCG as a front-end to generate tiny code instructions from any of
the input architectures it supports. Then code in QEMU IR form is
further translated into LLVM IR instructions. However, in QEMU,
certain features such as syscalls and complex instructions (e.g. float-
ing point division) are handled through a set of external functions
(written in C) known as helper functions. Therefore, using Clang,
QEMU helper functions are obtained in the form of LLVM IR and
statically linked before generating the LLVM module. Besides the
helper functions, additional support is needed mainly for initializa-
tion purposes. To this end, Revamb provides a set of support func-
tions which are linked to the LLVM module. Then, the linked LLVM
IR module is translated into machine code using LLVM compiler
infrastructure. Figure 4 depicts the translation process of Rev.ng
tool suite, which combines the use of QEMU’s front-end and LLVM.

Figure 4: Rev.ng’s SBT process combining the use of QEMU,
Revamb and LLVM.

4 FEASIBILITY STUDY
The feasibility study assess the static and dynamic migration ap-
proaches described above with respect to timing. To do so, a test
framework has been constructed, which provides means to measure
the execution time of a selection of WCET representative bench-
mark programs, provided by the Mälardalen WCET research group
[6] running on the legacy platform and on the new HW platform
using both migration approaches, static and dynamic. The obtained
results are then analyzed and compared in Section 5.

The test framework has been implemented on top of the fol-
lowing two Evaluation Boards (EBs): the ZC702 with a Zynq-7000
XC7Z020 SoC (consisting of a FPGA and an ARM Cortex-A9 proces-
sor with an operation frequency of 666 MHz) and the MinnowBoard
Turbot Dual-Core with an Intel Atom E3826 processor with an oper-
ation frequency of 1463 MHz. The former is employed as the source
processor (legacy), whereas the latter is used as the target processor
where the static and dynamic legacy code migration techniques are

4QEMU supports the emulation of various architectures including: Alpha, ARM, CRIS,
x86, MicroBlaze, MIPS, OpenRISC, PowerPC, RISC-V, SH4, Sparc and their 64-bit
variant when applicable.
5LLVM’s back end supports many ISAs, including ARM, MIPS, PowerPC, Sparc, x86
and x86-64. However, just x86 (both 32-bit and 64-bit), ARM and PowerPC include
most of the features.

tested 6. To measure execution time on the ARM processor we used
Xilinx’s Board Support Package (BSP) to access the global timer
counter, whereas to perform the measurements on the Intel Atom
processor the Linux high-resolution timer has been used.

4.1 Dynamic Instrumentation
For the timing assessment of the dynamic approach, benchmarks
need to be instrumented. However, the dynamic approach instru-
mentation solution is a twofold technique. On the one hand, the
source code is annotated with empty function calls (start_time()
and end_time()) to ease the start/end detection in QEMU. Using
an empty function call we ensure that there is a branch in the code,
consequently this instruction will be the first in the TB and we
will be able to detect it though the PC. On the other hand, QEMU
source code has been modified to integrate start/end PC detec-
tion (start_time_pc and end_time_pc) and perform the execution
time measurements. When launching QEMU, the start_time_pc
and end_time_pc values corresponding to the running benchmark
are passed through arguments. The function in charge of finding
the next TB, tb_find, identifies start_time_pc and end_time_pc
and computes the duration. Moreover, as previously mentioned,
QEMU chains consequently executed TBs to avoid context switch
cost. As a consequence, start and end TBs would be chained to
former TBs and control would not return to the execution manager.
Therefore, tb_find function has been altered to avoid start and
end TB chaining.

5 FEASIBILITY RESULT ANALYSIS
The feasibility survey compares the execution time of the Mälardalen
WCET benchmarks [6] running on top of the legacy HW platform
and the new HW using both, dynamic and static migration ap-
proaches. Given that the selected benchmarks contain a great vari-
ety of algorithms (including loops, nested loops, use of array and/or
matrices and use of floating point operations), we get a wide anal-
ysis of the timing behavior of the proposed static and dynamic
solutions.

5.1 Platform configuration
For the execution time analysis on the legacy HW (ZC702), the
Vivado Zynq example project is used. The generated bitstream is
exported to Software Development Kit (SDK), where benchmarks
are compiled (without any optimization 7, -O0).

The same example project is used to run the legacy code on the
new HW platform (MinnowBoard) through the dynamic approach.
However, as explained before, due to QEMU’s start-up procedure,
the code has to be compiled and linked to be placed at the OS
starting memory location, which in the case of armv7 architecture
is 0X10000. As well as for the legacy HW, the benchmarks have
been compiled without optimization.

6Despite the fact that the Cortex-A9 processor is not a legacy HW platform, it has been
chosen for the feasibility analysis for the fact that it is supported by the selected SBT
tool. However, Rev.ng can be inexpensively adapted to support other source/target
ISAs.
7This is a common practice in RT systems where the WCET is important for reliability
or correct functional behavior

RAPIDO ’20, January 21, 2020, Bologna, Italy Yarza, et al.

Regarding the static legacy code migration approach, Rev.ng
provides a cross-toolchain for each of the supported input architec-
tures. Therefore, the statically linked Linux input binary has been
generated using the corresponding toolchain (armv7a-hardfloat-
linux-ublibceabi-gcc) and without applying any optimization. Then,
the input binary has been statically translated using the translate
script provided with Rev.ng tool suite.

5.2 Evaluation process and results
To get the results, each benchmark has been executed 15000 times
(statistically relevant enough) on the legacy and new HW platforms
(using dynamic and static migration solutions) while collecting tim-
ing data. Given that we are targeting the migration of a reactive con-
trol system where the application is periodically triggered, QEMU
is launched only once executing the benchmarks periodically and
the first benchmark runs are excluded from the analysis. This way
the DBT warm-up time, code translation/optimization overhead on
the first runs when there is still no translated code available in the
code cache, does not affect the measurements8. Together with the
WCET benchmarks an empty application9 has also been analyzed.
Measuring the empty application execution time provides means
to measure the overhead introduced by the underlying system on
either migration approach, which is composed of: QEMU and Linux
PREEMPT_RT on the dynamic solution and the extra instructions
inserted on the code by Rev.ng translator and Linux PREEMPT_RT
on the static solution.

5.2.1 Translation overhead analysis. The translation overhead anal-
ysis is performed based on the empty application, measuring the
execution time on the legacy and new ISAs following a dynamic
and static translation process. Figure 5 shows the collected data
distribution with a zoom in the maximum execution time result
area. Table 2 contains the minimum, maximum, average, standard
deviation and 99%-quantile of the collected data.

p
ro

b
ab

ili
ty

 d
en

si
ty

Figure 5: Distribution of execution time data collected run-
ning the empty application on the new HW platform follow-
ing a dynamic/static translation process.

Results show that, as expected, the average translation overhead
of the DBT solution is higher than the average static approach
overhead, almost 3.7x greater. In the dynamic approach, translation
8An analysis of the (quantified) performance during this warm-up is out of the scope
of this work.
9We consider an empty application that whose main function does not contain any
instruction.

Table 2: Maximum, minimum, average, standard deviation
and 99%-quantile of the measured execution time when run-
ning multiple times the empty application on the new HW
platform following a dynamic/static translation process.

Execution time (ns)

min max avg std 99%-quantile

Dynamic 8342 358739 10043,33 5913,59 38860,76
Static 2558 330480 2751,55 1415,85 2985,18

and optimization counts on the measured execution time and even
though QEMU applies counter measures, such as translated code
caching and consequent TB chaining, it still implies great overhead.
Whereas the static approach is capable of generating more efficient
code, since neither translation nor optimization counts on the ex-
ecution time. Therefore, it is possible to apply more aggressive
optimizations.

Regarding the 99%-quantile, which indicates the value bellow
which the 99% of the measured values are found, the difference be-
tween the static and dynamic migration approaches is even greater.
The 99%-quantile in the dynamic migration approach is 13x higher
than that in the static approach and 3.9x higher than the dynamic
average execution time. Whereas the 99%-quantile in the static
approach is just 1.1x higher than the static average execution time.
The standard deviation is similar in both migration approaches,
58.9% of the average in the dynamic vs. 51.5% in the static approach.
These results lead to the conclusion that although both approaches
have little difference on the maximum execution time, these spo-
radic corner execution time values, which can be appreciated in
the zoom-in area in Figure 5, are more frequent in the dynamic
migration approach. This is reflected on the 99%-quantile, which
greatly differs form the average.

To get a better knowledge about how each migration approach
performs depending on the characteristics of the translated binary,
the following subsection provide a Static vs. Dynamic re-targeting
comparative analysis.

5.2.2 Static vs. Dynamic migration. The comparative analysis is
performed based on the execution time results obtained from run-
ning a WCET representative benchmark suite on top of the legacy
and new HW platforms. The benchmarks are first compiled for
the legacy architecture and then translated following static and
dynamic migration approaches.

In order to solve scaling problems, results have been clustered
into 4 different graphs, see Figure 6. These graphs show a compari-
son between the average value and 99%-quantile (overlapped) of the
measured execution time on the new ISAs. Moreover, the standard
deviation is represented as an error bar on the average value. Each
graph shows the timing results obtained for the dynamic and static
migration approaches.

When analyzing the results, benchmarks are classified into short-
and long-running according to their average execution time on the
legacy HW. We consider a benchmark to be short-running bellow
100000 ns and long-running over 100000 ns (measured on the legacy
processor). Moreover, for a better result analysis, benchmarks are
classified according to their characteristics (see Table 3). Based

Static/Dynamic Real-Time Legacy Software Migration – A Comparative Analysis RAPIDO ’20, January 21, 2020, Bologna, Italy

on the information provided by the Mälardalen WCET research
group [6], we have classify benchmarks depending on the type
of operations they contain: (1) complex computations, (2) simple
computations or (3) control flow statements. The first group is ex-
pected to have a low translation overhead, since the new processor
can handle better complex computations. The second group also,
since the translator can efficiently translate this code. Whereas the
third group is expected to have a high translation overhead, since
control flow statements hinder translation efficiency, mainly in the
dynamic approach due to the difficulties to apply TB-chaining, but
also in the static approach because statements might depend on
run-time behavior.

Table 3: Benchmark classification. S = always single path
program. L = contains loops. N = contains nested loops. A
= uses arrays and/or matrixes. B = uses bit operations. R =
contains recursion. U = contains unstructured code. F = uses
floating point calculation. CC = composed of complex com-
putations. SC = composed of simple computations CF = com-
posed of control flow statements.

Benchmark S L N A B R U F CC/SC/CF

adpcm - ✓ - - - - - - CF
bs - ✓ - ✓ - - - - CF
cnt - ✓ ✓ ✓ - - - - CF
compress - ✓ ✓ ✓ - - - - CF
cover ✓ ✓ - - - - - - CF
crc ✓ ✓ - ✓ ✓ - - - CC
duff ✓ ✓ - - - - ✓ - CF
edn ✓ ✓ ✓ ✓ ✓ - - - CC
expint ✓ ✓ ✓ - - - - - CF
fac ✓ ✓ - - - ✓ - - CF
fdct ✓ ✓ - ✓ ✓ - - - CC
fft1 ✓ ✓ ✓ ✓ - - - ✓ CC
fibcall ✓ ✓ - - - - - - CF
fir - ✓ ✓ ✓ - - - - SC
insertsort - ✓ ✓ ✓ - - - - SC
janne_complex ✓ ✓ ✓ - - - - - CF
jfdctint ✓ ✓ - ✓ - - - - SC
lcdnum - ✓ - - ✓ - - - CF
lms ✓ ✓ - ✓ - - - ✓ CC
ludcmp - ✓ ✓ ✓ - - - ✓ CC
matmult ✓ ✓ ✓ ✓ - - - - SC
minver ✓ ✓ ✓ ✓ - - - ✓ CF
ndes - ✓ - ✓ ✓ - - - CC
ns - ✓ ✓ ✓ - - - - CF
prime ✓ ✓ - - - - - - SC
qsort-exam - ✓ ✓ ✓ - - - ✓ CF
qurt ✓ ✓ - ✓ - - - ✓ CC
recursion ✓ - - - - ✓ - - CF
select - ✓ ✓ ✓ - - - ✓ CF
sqrt ✓ ✓ - - - - - ✓ CC
st ✓ - ✓ - ✓ - - ✓ CC
statemate - ✓ - - - - - - CF

Results show that most of the benchmarks that have been ana-
lyzed run faster applying the static translation approach (4.6x faster
on average), which might be due to the following two reasons: (1)
the dynamic approach has heavy run-time overhead, including code
translation/optimization and run-time management; and (2) due
to the fact that optimization time counts on execution time, the
dynamic approach does not apply aggressive optimization, which
leads to worse code quality. However, we did not find any relation-
ship between the benchmark characteristics and the average dy-
namic/static execution time ratio. As a general rule, the shorter the
benchmark execution time, the higher the 99%-quantile/average ra-
tio in the dynamic approach, which goes from 1.03 on long-running

to 3.74 on short-running benchmarks. In fact, QEMU’s run-time
overhead is significant on short-running benchmarks, whereas it is
not so, or at least not that much significant, on long-running bench-
marks. Moreover, from analyzing the average execution time ratio
between dynamically translated binaries running on the new HW
and legacy binaries running on the legacy HW, it can be appreciated
that the 10 slowest benchmarks (bs, fac, fdct, fibcall, janne_complex,
lcdnum, minver, qsort_exam, select, statemate) are mainly com-
posed of control flow statements and simple computations, except
for fdct. Whereas from the analysis of the average execution time
ratio between statically translated binaries running on the new
HW and legacy binaries running on the legacy processor, it can
be appreciated that among the 10 slowest benchmarks (bs, expint,
fft1, janne_complex, lcdnum, lms, ludcmp, qurt, sqrt, st), some are
mainly composed of control flow statements and little computa-
tions (e.g., bs, lcdnum), but many others are mainly composed of
complex computations (e.g., fft1, lms, sqrt, st). However, these slow
benchmarks mainly composed of complex computations, share a
common characteristic: they all contains floating point operations.
In fact, benchmarks with complex floating point operations (e.g.,
fft1, lms, ludcmp, sqrt, st) have the lowest average dynamic/static
ratio.

6 CONCLUSIONS AND FUTURE WORK
This work aimed at describing the proposed static and dynamic em-
bedded RT legacy code migration approaches and at performing a
feasibility analysis of both solutions. The dynamic approach is based
on QEMU machine emulator, whereas the static approach is based
on Rev.ng binary instrumentation framework. When migrating a
RT application, not just its functional properties but also the timing
behavior needs to be preserved. Therefore, the feasibility study
compares both migration approaches with regards to measured
execution time. To this end, a test framework has been constructed,
which provides means to measure the execution time of code ported
using both migration approaches. The test environment has been
implemented on top of an Intel Atom E3826 processor, where a
selection of WCET representative benchmarks compiled for ARM
Cortex-A9 have been ported. From the experimental result analysis,
it can be concluded that among the proposed migration approaches,
the static is the most appropriate method to port short-running
RT legacy code. Whereas the dynamic approach might be a better
choice when porting RT legacy code with long periods (over 0,01s).

As already mentioned in the introduction, this work described
early results. Future work will provide means to preserve the timing
behavior of the legacy code on the new HW platform. To this end,
it is necessary to define the timing constraints that the system
has to meet and their granularity and the execution time control
mechanism that will be integrated in the new ISA. The timing
enforcement solution together with I/O virtualization implemented
on an appropriate BT system (dynamic or static, depending on the
characteristics of the legacy software to be ported) will provide
means to enforce the legacy timing requirements on the new HW
platform and a way of time sensitive interaction between the control
system and the external environment.

RAPIDO ’20, January 21, 2020, Bologna, Italy Yarza, et al.

Figure 6: Timing results of benchmarks running on the legacy and new HW platforms: static vs. dynamic translation.

7 ACKNOWLEDGMENTS
The authors would like to thank the Rev.ng tool suit developers for
supporting them with the Rev.ng tool and providing them access
to their private repository.

REFERENCES
[1] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In USENIX

Annual Technical Conference, FREENIX Track. 41–46.
[2] Keith Bennett. 1995. Legacy systems: Coping with success. IEEE software 12, 1

(1995), 19–23.
[3] C. Cifuentes and M. Van Emmerik. 2000. UQBT: adaptable binary translation at

low cost. Computer 33, 3 (2000), 60–66. https://doi.org/10.1109/2.825697
[4] Bryce Cogswell and Zary Segall. 1995. Timing insensitive binary to binary

translation of real time systems. In Workshop on Architectures for Real-Time
Applications, ISCA.

[5] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. 2017. rev.ng: a
unified binary analysis framework to recover CFGs and function boundaries. In
CC 2017. ACM, 3033028, 131–141. https://doi.org/10.1145/3033019.3033028

[6] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. 2010. The
Mälardalen WCET Benchmarks – Past, Present and Future. In WCET2010, Björn
Lisper (Ed.). OCG, Brussels, Belgium, 137–147.

[7] Thomas Heinz. 2008. Preserving temporal behaviour of legacy real-time software
across static binary translation. In Proceedings of the 1st workshop on Isolation
and integration in embedded systems. ACM, 1–4.

[8] Yuan-Shin Hwang, Tzong-Yen Lin, and Rong-Guey Chang. 2010. DisIRer: Con-
verting a retargetable compiler into a multiplatform binary translator. ACM
Transactions on Architecture and Code Optimization (TACO) 7, 4 (2010), 18.

[9] Bor-Yeh Shen, Jiunn-Yeu Chen, Wei-Chung Hsu, and Wuu Yang. 2012. LLBT:
an LLVM-based static binary translator. In Proceedings of the 2012 international
conference on Compilers, architectures and synthesis for embedded systems.
ACM, 51–60.

[10] David Ung and Cristina Cifuentes. 2000. Machine-adaptable dynamic binary
translation. In ACM SIGPLAN Notices, Vol. 35. ACM, 41–51.

[11] Christian Wagner and Christian Wagner. 2014. Model-Driven Software
Migration. Springer.

[12] M. Wahler, R. Eidenbenz, C. Franke, and Y. A. Pignolet. 2015. Migrating legacy
control software to multi-core hardware. In Software Maintenance and Evolution
(ICSME), 2015 IEEE International Conference on. 458–466. https://doi.org/10.
1109/ICSM.2015.7332497

[13] Bing Wu, Deirdre Lawless, Jesus Bisbal, Jane Grimson, Vincent Wade, Donie
O’Sullivan, and Ray Richardson. 1997. Legacy system migration: A legacy data
migration engine. In Proceedings of the 17th International Database Conference
(DATASEM’97). 129–138.

[14] Yindong Yang, Haibing Guan, Erzhou Zhu, Hongbo Yang, and Bo Liu. 2010.
Crossbit: a multi-sources and multi-targets DBT.

[15] Irune Yarza, Mikel Azkarate-askasua, Kim Grüttner, and Wolfgang Nebel. 2018.
Real-Time Capable Retargeting of Xilinx MicroBlaze Binaries using QEMU: A
Feasibility Study. In Proceedings of the Rapido’18 Workshop on Rapid Simulation
and Performance Evaluation: Methods and Tools. ACM, 3180671, 1–8. https:
//doi.org/10.1145/3180665.3180671

30

Towards A Power Advisor in a
Devkit for Internet-of-Things
Microcontrollers

Vincent Morice, Florence Maraninchi and Jérôme Cornet

31

Towards A Power Advisor in a Devkit for Internet-of-Things
Microcontrollers

Vincent Morice∗

Univ. Grenoble Alpes, CNRS,
Grenoble INP, VERIMAG, 38000

Grenoble, France
vincent.morice@univ-grenoble-

alpes.fr
vincent.morice@st.com

Florence Maraninchi
Univ. Grenoble Alpes, CNRS,

Grenoble INP, VERIMAG, 38000
Grenoble, France

florence.maraninchi@univ-grenoble-
alpes.fr

Jérôme Cornet
STMicroelectronics, 38019, Grenoble,

France
jerome.cornet@st.com

ABSTRACT
Microcontrollers (MCUs) for the Internet-of-Things (IoT) are pow-
erful and versatile computing platforms, which may be hard to
program correctly and efficiently; power performance is particu-
larly important. We inestigate automatic methods to detect software
performance anti-patterns for this class of systems, so as to help
the software developer with power-related aspects. We use a vir-
tual prototype, i.e., we execute the real object code on a simulated
model of the hardware platform, given as a transaction-level model
(TLM) augmented with dedicated monitors. We study two cases
taken from an industrial example, and show that our method can
help detect patterns that would be difficult to detect statically, even
when the source code is available, because they involve the state of
the hardware and the timing of operations.

KEYWORDS
Transaction-Level Modeling, IoT, Power Consumption, DevKit

1 INTRODUCTION
1.1 IoT Chips
The STM32WB (STMicroelectronics), the CC2540 (Texas Instru-
ment), the BM70 (Microchip), or the QN9080 (NXP), are powerful
and versatile microcontrollers units (MCUs), containing one or
more CPUs (like ARM-Cortex series) and integrated with various
sensors, actuators, and connectors, designed with power perfor-
mance in mind. They may be powered by a battery and offer so-
phisticated clock and power modes. The difficulty to write good
software for those platforms is a known problem in the industry:
software should exploit the capabilities of the hardware correctly
(respecting its specification), efficiently (consuming as little power
as possible), and securely (resisting attacks). In this paper we fo-
cus on power efficiency. Dealing with numerous sensors makes
this type of HW/SW platform a cyber-physical system (CPS): some
knowledge about the physical environment can help build efficient
solutions, for instance by selecting appropriate refreshment rates
for sensors. A thorough understanding of the computing platform
is needed in order to guarantee power performance, because a very
small variation in the software can have tremendous effects on
the consumption, and therefore the lifetime of the IoT object. In
one of the examples below (see 2.1.2), the lifetime increases from
approximately 3 days to approximately 8 months with a 700 mAh
battery.
∗Also with STMicroelectronics, 38019, Grenoble, France.

1.2 Methods and Tools for the Software
Developer

Difficulties to write efficient and correct software can be tackled in
various ways. Let us consider the pros and cons of each solution.

(1) Careful reading of the source code by experts: requires high
expertise, not necessarily available at the customer site, and access
to the source code, not always available for libraries.

(2) Using some Hardware-Abstraction-Layer (HAL) provided by
the vendor: helps avoiding bugs and writing portable code; but
it is sometimes counter-productive as far as power efficiency is
concerned.

(3) Using interactive debugging tools like GDB for the software
running on the real chip: requires heavy human interaction and
may fail to correct power consumption or timing problems because
they are due to the invisible hardware states.

(4) Executing the software on some simulated (thus fully observ-
able) model of the hardware: gives non-intrusive access to many
details of the hardware platform that may be hard to observe on
the real chip, while having a clear impact on power consumption,
like the traffic on the bus or the power modes of the CPU; some
vendors provide simulators for a partial view of their platform, like
the configuration of the clocks.

(5) Applying data mining techniques to the automatic detection
of patterns in execution traces [10]: relies on the availability of a
large number of traces, and algorithms to search those large data
sets; it is not meant for a monitoring (incremental) implementation.

(6) Automatically detecting software (anti-)patterns [14]: can
identify critical points quickly in a large number of code lines, but
these points are not necessarily bugs or actual problems in real
executions; it was first proposed for object-oriented development;
it is more difficult on less-structured low-level code.

1.3 Exploiting Virtual Prototypes
We focus on power performance: the MCU or the sensors provide
several modes that influence power, which makes it very hard to
talk about power at a syntactical level; we need to look at the
dynamic behavior.

Our goal is to explore a solution of type (4) above. It relies on
a virtual prototype of the platform, given as a Transaction-Level
Model (TLM). Virtual prototypes in the form of TL models started
almost 20 years ago as tools to help hardware and software develop-
ers communicate, and also to allow for developing software before
the hardware is indeed available [8]; they are on the path to be a

Trovato and Tobin, et al.

key aspect of the IoT ecosystem, providing developers with tools
that help accelerate software development [11].

Our ultimate objective is to provide a development kit based on
the TL model of a platform, extended with performance diagnosis
capabilities. This kit will automatically warn the user about ineffi-
cient uses of the hardware, at execution time. Our aim is not only
to diagnose inefficient uses, but also to provide the user with some
advice for better code, hence smoothing the learning curve.

1.4 Contributions and structure of the paper
In Sections 2 and 3 we study a weather station based on a
STM32F411 chip [5]. The code is a refactoring of a representa-
tive real industrial example from STMicroelectronics and partially
uses the hardware abstraction layer provided by the company. The
chip is mounted on a Nucleo-64 prototyping board [3] extended
with a sensor expansion board including various sensors [1]. We
identify two classes of very common problems to be detected by
monitors: polling loops, and inefficient use of sensors. we show
why dynamic information is key to the detection of real problems,
and we show how to choose specific events and patterns to observe
in TL traces in order to find occurrences of those two problems.
In Section 4 we give a quick view of the monitor implementation,
and evaluate our solution. Sections 5 and 6 give related work and
conclude.

2 CASE STUDY: POLLING LOOPS
The first example is about detecting polling loops because it is
generally more costly than waiting for an appropriate interrupt
if available. When using methods based on the structure of the
code, it means detecting the pattern while(condition){};, either
syntactically, or on the binary code. As far as power consumption
is concerned, the cost comes from the CPU being active (while it
could be sleeping), but also from the bus activity induced by the
evaluation of the condition. We aim at detecting polling loops even
if the corresponding code is spread across several layers of low-level
code, part of it possibly available in binary form only. Moreover, we
would like to warn only when they have a significant effect, which
may depend on the effective number of passes in the loop: looping
twice is probably harmless, but 50 times may be significant.

We give two examples: the first one has to be replaced by some-
thing more efficient; the second one can be kept as it is.

2.1 Example: a Delay implemented by a Polling
Loop

2.1.1 Existing Code. In the first example, polling is used to wait
for a certain delay, as shown on Figure 1. HAL_Delay() takes as
a parameter the time to wait (Delay), saves the current time and
starts the polling loop. uwTick is a global variable incremented on
every SysTick timer interrupt. The timer is configured to fire its
overflow interrupt every millisecond. This example is used in a
weather station application whose main() function is shown on
Figure 2: it reads the sensors, then prints the value using the UART
and then waits for 800 ms using the HAL_Delay() function.

2.1.2 Proposed Modification. Implementing the wait functionality
efficiently on our platform is easy: put the MCU in a deep sleep

1 void HAL_Delay(__IO uint32_t Delay) {
2 uint32_t tickstart = 0;
3 tickstart = HAL_GetTick();
4 while((HAL_GetTick() - tickstart) < Delay) {}
5 }
6 uint32_t HAL_GetTick(void) { return uwTick; }
7 void HAL_IncTick(void) { uwTick++; }
8 void SysTick_Handler(void) { HAL_IncTick(); }

Figure 1: A delay implemented by a polling loop
1 int main(void) {
2 init();
3 while(1) {
4 int16_t temp = EnvSensor_GetTemperature();
5 int32_t pressure = EnvSensor_GetPressure();
6 uint16_t humidity = EnvSensor_GetHumidity();
7 printf("T, P, H = %d\n",temp,pressure,humidity);
8 HAL_Delay(800);
9 }}

Figure 2: main() function of the weather station application

1 /* asking access to registers */
2 CLEAR_BIT(RTC->CR, RTC_CR_WUTE);
3 /* Wait till access to wakeup timer is allowed */
4 while(READ_BIT(RTC->ISR,RTC_ISR_WUTWF) != 1);
5 config_wakeup_timer();

Figure 3: Polling loop on registers of the wakeup timer

mode and use the Real Time Clock (RTC) to wake it up. The RTC
behaves as a timer, sending an interrupt after counting up to a
certain value. The delay function now simply launches the count
and puts the chip in STOP mode. The RTC also has to be initialized
and its interrupt handler has to acknowledge the interrupt.

The STOP mode disables a lot of peripherals, including the MCU,
the SysTick timer and the bus, in order to save power. According to
the ST tool “STM32 CubeMX” [4], which gives approximate power
consumption related to those MCU states, implementing the wait
process using the RTC and the STOP mode instead of the polling
loop decreases the consumption from 8.5 mA to 0.12mA. When
powered by a 700 mAh battery, the code modification can extend
the lifetime of the system approximately from 3 days to 8 months.

2.2 Example: Unlocking Registers
2.2.1 Existing Code. The second example (Figure 3) is a piece of
code used to unlock access to the configuration registers of the
wake-up timer. The manual [5] explicitly requires the software to
implement this polling loop. The loop waits for the Wakeup Timer
Writing Flag (WUTWF) to be set, indicating that other configuration
registers can now be written. The Wakeup timer is a feature of the
RTC component, so the left part of the condition checks for the
WUTWF bit of the RTC Initialization and Status Register (ISR) using
the macro READ_BIT(RTC->ISR,RTC_ISR_WUTWF).

In the real platform the wakeup timer has its own clock, different
from that of the CPU, and the unlocking operation takes a few cycles
of the wakeup timer’s clock. The effective number of iterations
depends on the relative speeds of the CPU’s clock and the wakeup
timer’s clock. The faster the CPU’s clock, the more loop iterations
can be executed during the time it takes to perform the unlocking
operation.

Towards A Power Advisor in a Devkit for Internet-of-Things Microcontrollers

2.2.2 Keeping the Polling Loop. This is a typical case of a harmless
polling loop because the way the hardware is designed ensures a
very small number of iterations (in our example, we observed 20
in the worst case). We use transaction-level models, which can be
approximately timed with realistic assumptions on the duration
of transactions. Hence simulations with such models also show a
small number of iterations. This type of polling case can be ignored
easily, by using a threshold on the number of iterations.

2.3 Characterizing and Detecting Polling Loops
on TL Models

The first step is to characterize problematic polling loops by ob-
serving the dynamic behavior of the code. The idea is to focus on
the actual effect of a polling mechanism, even if it is not written as
a typical polling loop; or it is, but with harmless effects.

The effect of a polling mechanism is characterized by some repet-
itive pattern being observed, and we can decide to issue a warning
after a given number of repetitions. We propose to observe the se-
quence S of READ transactions issued on the bus. Section 4 explains
what is indeed observable (not all variable accesses do generate bus
transactions), and how to filter out other READ transactions (e.g.,
from interrupt handlers).

In the first example above, there are 3 variables in the con-
dition of the loop: Delay, uwTick and tickstart. The latter is
stored in a CPU register, hence does not generate bus transactions.
There are only two addresses that appear in READ transactions;
(HAL_GetTick() function calls also generate READ transactions,
but this is not an issue as explained in section 4.) uwTick++ is
filtered since it is executed in an interrupt handler.

In the second example there is only one access to a register of
the RTC component that generates a READ transaction on the bus.
Section 4 explains the instrumentation of the TL model, and shows
how to detect the first case, while ignoring the second one.

The last important point is to characterize the repetitive patterns
of READ transactions that are indeed issued on the bus for typi-
cal polling loops. For instance, if the code indeed contains a loop
while(condition){};, each evaluation of the condition generates
successive READ transactions, depending on the logical structure
of the condition (in C the evaluation of cond1 && cond2 does not
evaluate cond2 — hence does not access its variables — if cond1
is false). There is no cache between the CPU and the bus, so each
access to a variable generates a transaction. Observing repeated
accesses to the variables of cond1 is a hint that some polling situa-
tion might be involved, but it depends on which other accesses are
observed between the accesses to the variables of cond1. Extracting
also the variables of cond2 helps confirm that there is a polling
case.

2.4 Formalizing Patterns
As an example, let us consider the dynamic behavior of a program
that checks repeatedly a condition cond:
((a < 12)&&(a >= 0))||(b == 0)||(c == 0),
either written exactly like that, or obtained with macros and calls to
other software layers. Notice the same variable may appear several
times in the condition.

The iterative evaluation of cond generates sequences of accesses
of the form (a|aa|aab|aabc)∗ if all variables are observable (i.e.,
generate transactions on the bus) or simply (a|aa|aac)∗ if, e.g., b
does not.

Since we do not know in advance which addresses a, b, c
to look for when searching for polling loops, our problem
is a parametric version of the above example: we search for
(x|xy|xyz|xyzt|...)∗, where x, y, z, t, ... can be instanti-
ated with any address. The number of these “parameters” depends
on the condition. It is not too restrictive to consider that it is bounded
by a relatively small number P . In the sequel, we take P = 3 as an
example (3 observable accesses). The problem becomes to check
whether an execution trace is of the form: (x|xy|xyz)∗ for some
x, y, z. For a given vocabulary V and m ∈ V ∗, we can define
m ∈(x|xy|xyz)∗ as: ∃(a,b, c) ∈ V 3.m ∈(a|ab|abc)∗. If the vocab-
ularyV where a, b, c belong is finite, this can be written as a sim-
ple regular expression, because ∃ can be expanded into ordinary al-
ternatives:m ∈(x|xy|xyz)∗ ⇐⇒m ∈ ∨

(a,b ,c)∈V 3(a|ab|abc)∗.
Finally, we replace the ∗ by [n,+∞], to start warning about the

presence of a polling loop only if it exceeds a number n of effective
iterations. In order to validate quickly the idea of using monitor-
ing techniques to detect polling loops, we implemented a simpler
(yet very frequent) case without Boolean operations. Instead of
searching instances of (x|xy|xyz)[n,+∞], we search for x[n,+∞]
| (xy)[n,+∞] | (xyz)[n,+∞]. See details in Section 4.

This example does not fully characterize all polling loops. For
instance, instructions in the condition or the loop body (especially
branching) can partially hide the repetition or produce a large
number of repetitive addresses observed on the bus. Moreover, if
we choose a very big P , we might end up detecting the infinite
loop of the main program. However we think this is a promising
approach, since it already detects a lot of typical polling loops in
typical code samples. Further work will include more cases.

3 CASE STUDY: TEMPERATURE SENSOR
The second case-study concerns the use of the LPS22HB tempera-
ture sensor [2], which has several operating modes: (1) In one-shot
mode the software has to set the one-shot bit to ask for a new value
to be measured and prepared; the bit will be cleared by hardware
when the new value is available; (2) In auto-refresh mode the
sensor can produce a new value with a given period chosen in
{13, 20, 40, 100, 1000} milliseconds. If the application needs less
than one value per second, or more than one every 13 ms, it should
use the one-shot mode. In both modes the last measure is always
available so that the software can read the value at any time.

The idea of this example is to detect the uses of the one-shot mode
that could be improved by using the auto-refresh mode instead. The
one-shot mode can have a significant impact on the consumption,
because it involves more transactions on the MCU bus: (1) the
software sends the address of the control register of the sensor and
the data (“1” on the one-shot control bit), (2) it sends the address
of the temperature data register in order to read the value. The
auto-refresh mode is far more efficient, since only step (2) is needed.
Moreover a READ needs two distinct accesses to two 8-bit registers
containing the MSBs and the LSBs of the temperature value.

Trovato and Tobin, et al.

3.1 Example
3.1.1 Existing Code. Our application uses the one-shot mode
(see 4). The bit is set (Set_One_Shot), requiring a new measure; next
time the function will be called, it will access the value (Get_Temp)
and get this new measure. In our example, the function is called
approximately each 800ms (see main code on Figure 2).

1 int16_t EnvSensor_GetTemperature(){
2 int16_t SensorValue;
3 if(TEMP_SENS_IsInitialized()){
4 /*Read the previous value of the sensor
5 and restart the One Shot for the
6 next measurement*/
7 if(TEMP_SENS_Get_Temp(&SensorValue)){
8 if(TEMP_SENS_Set_One_Shot()){
9 return SensorValue;}}}

10 return -1;} // Error

Figure 4: Temperature measurement code in one-shot mode
(simplified).

1 int16_t EnvSensor_GetTemperature(){
2 int16_t SensorValue;
3 if(TEMP_SENS_IsInitialized()){
4 if(TEMP_SENS_Get_Temp(&SensorValue)){
5 return SensorValue;}}}
6 return -1;} // Error

Figure 5: Temperature measurement code in auto-refresh
mode (simplified).

3.1.2 Proposed Modification. The alternative implementation is
to use the auto-refresh mode, as shown on Figure 5. The auto-
refresh period is set in the init() function called at startup in
the main() function. The idea is to choose a period close to the
delay D implemented by the application (800ms in our case). If we
do not have the full source code, or because it is hard to analyze
statically anyway, D can be estimated dynamically by looking at
the TL traces. On this example we choose 100ms .

The cost of one bus transaction alone is very hard to estimate,
so the power consumption of the main() function (Fig. 2) has been
measured on the board with the initial and modified versions of the
EnvSensor_GetTemperature() function and our proposed modi-
fication for the HAL_Delay() function (see section 2.1.2). Average
consumption is 1.57 mA (± 0.01 mA) for auto-refresh mode and
2.47 mA (± 0.01 mA) for one-shot mode. It would correspond to an
increase in the lifetime from approximately 12 days to more than
18 days with a 700 mAh battery.

3.2 Detecting the One-Shot Mode on TL Traces
The type of situation we want to detect involves software intended
to read a fresh value of the temperature at a regular rate. We assume
the one-shot mode is always less efficient than the auto-refresh
mode when used with a period Pr < 1s. Pmax and Pmin are the
respective maximum and minimum possible auto-refresh periods
of the sensor (here Pmax = 1s and Pmin = 13ms). The decision is
given by Table 1. The last line shows a hypothetical case where the
software needs a new value more than once every 13 ms. It might be
useful for some critical applications where the temperature is rising
up extremely fast, but it cannot be accomplished in auto-refresh

mode, the one-shot mode should be used. In this case this is not a
matter of power efficiency so this is out of our scope.

We can observe the accesses to the sensor registers: reading
the value, and requesting the one-shot mode. The tricky part is to
measure time between requests to estimate the period, because we
work with a simulated model of the hardware platform for which
timing is always an approximation; moreover, even with a simple
loop code, the software on the real platform does not read the value
on a strictly periodic way.

We measure the period several times and compute the average.

Table 1: Detecting Inefficient Uses of the Sensor

One-shot Auto-Refresh

Pmax > Pr >
Pmin

inefficient (too
many

transactions)
efficient

Pr > Pmax efficient

inefficient (some
values will be
overwritten

before they are
read)

Pr < Pmin correct
wrong (some
values will be

read twice)

4 IMPLEMENTATION AND EVALUATION
4.1 The TL Platform
The virtual prototype is implemented as a SystemC TL model of the
STM32 MCU, including an instruction-set-simulator provided by
ARM, and a TL model of the LPS22HB temperature sensor. For the
first example (polling loops) we observe bus transactions. Direct
Memory Interface (DMI) has to be disabled to ensure transactions
visibility. For the second example, we observe the transactions on
some registers of the sensor: CTRL_REG2 is written when a value is
asked in one-shot mode, TEMP_OUT_H and TEMP_OUT_L contain the
temperature value, CTRL_REG1 controls the auto-refresh rate.

4.2 How to Add Monitors
In our proof-of-concept implementation, the monitors are first im-
plemented as classes in Python scripts. The scripts are called at
the beginning of the SystemC simulation, and instantiate Python
objects representing the monitors. Using Python allows high flex-
ibility and coding simplicity: adding a new monitor can be done
without heavy C++ re-compiling of the platform.

In the TL model, the bus and the sensor registers are SystemC
modules that receive transactions. The object constructor of the
monitors sets a watchpoint on a SystemC module and is pro-
grammed to trigger when the module receives a transaction with
certain conditions, which may involve the metadata of the trans-
action. When it happens, the SystemC simulation is paused, the
state of the hardware model can be inspected (for instance bits in
control registers), the simulation date and all the metadata of the
transaction are given to a Python method of the monitor. When
the method returns it gives control back to the SystemC simulation.

Towards A Power Advisor in a Devkit for Internet-of-Things Microcontrollers

The monitors can wait for a user action before giving control back
to the SystemC simulator. This can be useful for the user to see
the current instruction of the embedded software, via a connected
debugger, or to inspect the internal state of the monitors.

4.3 Monitor for the Detection of Polling Loops
Observing the transactions on the bus is always available in TL
models, but not necessarily the values of the registers internal to
the CPU, like the program counter, if the CPU model is vendor-
specific. So our polling loop detection works only with the memory
accesses and the accesses to registers in components distant from
the CPU. The monitor sets a watchpoint on the bus that triggers on
the condition READ. When SystemC gives control to the Python
script, it also transmits the target module name and the address.

4.3.1 Filtering Bus Transactions. We need to observe the sequence
S of read addresses issued on the bus by running the polling loop
alone. But other accesses are due to the execution of the interrupt
handlers on the same CPU (or even other threads if some scheduler
was used, but we consider bare-metal implementations). It is possi-
ble to ignore any transaction issued while an interrupt is in active
state. The virtual prototype includes a model of the nested vec-
tor interrupt controller (NVIC) that provides a register to indicate
whether any interrupt is active or not. An interrupt is active when
the CPU is running the interrupt handler (see STM32 reference
manual [5]). As the first monitor is disabled when an interrupt is
active, we instantiate another monitor — destroyed at the end of
the interrupt handler — in order to detect polling loops inside it.
So the maximum number of monitor instances is the number of
possible interrupts: 255. Transactions due to fetching instructions
from memory can also be filtered out: the memory location of the
code is known so the corresponding addresses can be ignored.

4.3.2 Recognizing a Polling Loop Sequence. We now work only
with READ transactions observed on the bus, targeting the data
memory section and the peripherals. As mentioned in section 2.4,
the monitor looks for the regular expression x[n,+∞] | (xy)[n,+∞]
| (xyz)[n,+∞] in the sequence of transactions. The recognizer is
fully implemented in Python in the monitor class, initialized with
a given maximal size of the repetitive patterns to be recognized P ,
and a minimum number of iterations n. We use P = 3 and n = 21
in the example.

4.4 Monitor for Sensor Mode Advice
We consider that the user provides our tool with the reference of
the sensor used (here LPS22HB); the tool can instantiate a corre-
sponding TL model enriched with the detection of the available
refresh periods.

The monitor sets three watchpoints: (1) On the one-shot bit of
the register CTRL_REG2 triggering on the condition WRITE, (2) on
the register TEMP_OUT_L triggering on the condition READ and (3)
on the register TEMP_OUT_Hwith the same condition. When a watch-
point is triggered, the monitor updates the associated measured
periods with the simulation date. It then checks for the inequali-
ties of the table 1 and warns the user in the inefficient cases. The
monitor also checks the field ODR of the register CTRL_REG1 that
indicates the sensor mode (ODR , 0 for auto-refresh, 0 for one-shot).

4.5 Example Results as Shown to the Developer
In our example, Fig. 6 is the message displayed when the monitor de-
tects an inefficient use case of the sensor. If a debugger is connected
then the simulation is stopped and it indicates that the software
is currently running the TEMP_SENS_Set_One_Shot() function in
the call stack. Fig. 7 is the message for a polling loop. The debugger
indicates that the software is currently running HAL_Delay().

Possible inefficient use of the sensor:
top.NODE_0.LPS22HB.registers.CTRL_REG2
ONE-SHOT asked with a period: 803,135,151 ns.
auto-refresh at 100 ms might save some transactions.

Figure 6: Detection of Inefficient Uses of a Sensor

Polling suspected at addresses 0x20000260, 0x20017FD0
target: top.NODE_0.NUCLEO.STM32.RAM
You might consider putting the CPU in sleep mode and
programming a wake-up interrupt!

Figure 7: Detection of a Polling Loop

4.6 Accuracy of the Detection Principle
The Hal_Delay() polling loop (Fig. 1) is detected correctly after
21 iterations and the message of Fig. 7 is displayed. Our proposed
modification using the RTC wakeup timer, running the harmless
loop (Fig 3) is filtered out correctly with the same monitor. Other
polling loops are also successfully detected like the example of Fig. 8,
although they include some code inside the loop which generates
other transactions on the bus.

1 /* Wait until ADDR or AF flag are set */
2 tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR);
3 tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF);
4 tmp3 = hi2c->State;
5 while((tmp1 == RESET) &&
6 (tmp2 == RESET) &&
7 (tmp3 != HAL_I2C_STATE_TIMEOUT)){
8 if((Timeout == 0) ||
9 ((HAL_GetTick() - tickstart) > Timeout))

10 hi2c->State = HAL_I2C_STATE_TIMEOUT;
11 tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR);
12 tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF);
13 tmp3 = hi2c->State;}

Figure 8: A Complex Polling-Loop Example.

4.7 Impact of the Instrumentation on
Simulation Time

In all cases above, the embedded software has been compiled with
the -O0 option using embedded GCC. The additional cost of the
instrumentation is due to: (1) the context switches between SystemC
and Python; (2) the fact that we have to disable the Direct-Memory-
Interface (DMI) optimization to ensure visibility of transactions;
(3) the cost of the pattern detection algorithms themselves. The
cost of detecting sensor uses is negligible, because the registers are
accessed very seldom in the main loop, and checking the sensor
mode does not require any costly operation.

We therefore focus on the polling-loop monitor. We measured
the simulation duration from the start until the first call to
HAL_Delay(800) in the main function (Fig. 2) with various com-
binations of DMI and monitor enabling and disabling. In table 2,
None indicates that the monitor is disabled. C++ indicates that the

Trovato and Tobin, et al.

Monitor None C++ Empty Present

DMI On 0.7 sec 0.73 sec 2.82 sec 3.06 sec
Off 1.19 sec 1.24 sec 24.05 sec 28.41 sec

Table 2: Impact of enabling/disabling DMI and monitor dur-
ing simulation, measured until first call to HAL_Delay().

monitor is implemented directly in the model in C++, Empty indi-
cates a monitor that triggers a SystemC to Python context switch
at each READ bus transaction, but does nothing. This is useful to
evaluate separately the cost of the pattern detection algorithm. The
DMI is disabled (Off) only on the data section memory zone, hence
code fetching remains invisible.

The duration have been measured using the “time” linux com-
mand, adding the user and the system times. Results show a serious
performance breakdown due to Python/SystemC context switches,
but this can be avoided writing the monitor in C++. The pattern
recognition algorithm itself and disabling the DMI also slow down
the simulation. In addition leaving DMI enabled, and instantiating
monitors, also have a small impact while it should not (DMI en-
abling hides all memory bus transactions, so the watchpoint never
triggers). This is due to the loading of the python monitor when
simulation starts.

These measures show that we can focus on the detection algo-
rithms alone, the instrumentation mechanism being sufficiently
efficient.

5 RELATED WORK
[12] proposes to use dynamic binary instrumentation (DBI) to de-
tect excessive dynamic memory allocations, and argues that it is a
software performance anti-pattern very difficult to detect statically,
because it relies on timing (it detects short-lived, high-frequency dy-
namic memory allocations). The general framework is very similar
to ours. We use a simulation of the hardware because power con-
sumption depends on the state of the hardware platform, and some-
times on timing. We may use instrumentations of an instruction-set
simulator, which has the same potential as DBI. [12] also provides
an interesting review of other dynamic approaches for other soft-
ware performance anti-patterns.

[9] is able to detect certain software performance anti-patterns
(resource leaks such as CPU, memory, battery) in android applica-
tions, which are sometimes imposed by the underlying frameworks.
In our case, this would be due to the HAL. The approach is based on
analysing the code of the application, thus being static but without
the need for the source code. The 8 patterns detected are all related
to the static structure of the code.

[10] applies data mining techniques to the analysis of real-time
streams in multimedia applications. It helps understand the viola-
tions of QoS properties, due to tasks missing their deadline. The
implementation is not meant for monitoring contexts, and may
need the full trace.

[7] presents efficient algorithms to find frequent sequences in
databases of ordered transactions. The type of patterns that may be
searched resembles what we need for the polling case, but the search
criteria is a quantitative measure of the frequency in the whole
database. On the contrary, our definition of a polling is local, it does

not relate to the frequency, in the whole behavior, of the memory
transactions generated by the evaluation of the loop condition.
Moreover, the family of algorithms developed for pattern mining
in databases does not necessarily work in a incremental way, which
is necessary for our monitoring purpose.

6 CONCLUSION AND FURTHER WORK
We showed on two frequent examples how detecting problems dy-
namically allows to focus on the real impact of bad software. A piece
of code that looks like a polling loop is not always one, and even if it
is, it is not always bad for energy consumption. The replacement of
the polling loop involves the use of a CPU sleep mode, whose effect
cannot be captured at source level. For the sensor example, the
dynamic detection on a timed simulation model allows to reason
about periods, which, again, would be difficult statically. Further
work will be devoted to other classes of power-related problems.
Ongoing work is devoted to the design of a dedicated algorithm for
the detection of polling loops, exploiting the fact that the pattern
(x|xy|xyz) has a very particular shape. We will also investigate
whether our patterns can be formalized as properties of the traces
written in languages like PSL [6], so that they can then be com-
piled into monitors, using techniques similar to those of [13], for
instance.

REFERENCES
[1] [n.d.]. IKS01A2 Extension Board. www.st.com/en/ecosystems/x-nucleo-iks01a2.

html.
[2] [n.d.]. LPS22HB Temperature Sensor. www.st.com/en/mems-and-sensors/

lps22hb.html.
[3] [n.d.]. Nucleo F411RE Board. www.st.com/content/st_com/en/products/

evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-
mpu-eval-tools/stm32-nucleo-boards/nucleo-f411re.html.

[4] [n.d.]. STM32CubeMX. www.st.com/en/development-tools/stm32cubemx.html.
[5] [n.d.]. STM32F411RE. www.st.com/content/st_com/en/products/

microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-
high-performance-mcus/stm32f4-series/stm32f411/stm32f411re.html.

[6] Ben Cohen, Srinivasan Venkataramanan, and Ajeetha Kumari. 2004. Using
PSL/Sugar for formal and dynamic verification: Guide to Property Specification
Language for Assertion-based Verification. VhdlCohen Publishing.

[7] Minos N Garofalakis, Rajeev Rastogi, and Kyuseok Shim. 1999. SPIRIT: Sequential
pattern mining with regular expression constraints. In VLDB, Vol. 99. 7–10.

[8] Franck Ghenassia. 2005. Transaction Level Modeling With SystemC: TLM Concepts
And Applications for Embedded Systems. Springer-Verlag.

[9] Geoffrey Hecht, Romain Rouvoy, Naouel Moha, and Laurence Duchien. 2015.
Detecting antipatterns in android apps. In Proceedings of the Second ACM In-
ternational Conference on Mobile Software Engineering and Systems. IEEE Press,
148–149.

[10] Oleg Iegorov, Vincent Leroy, Alexandre Termier, Jean-François Méhaut, and
Miguel Santana. 2015. Data Mining Approach to Temporal Debugging of Embed-
ded Streaming Applications. In Proceedings of the 12th International Conference
on Embedded Software (EMSOFT ’15). IEEE Press, Piscataway, NJ, USA, 167–176.
http://dl.acm.org/citation.cfm?id=2830865.2830884

[11] Philippe Magarshack. 2018. Accelerating IoT Device Development — from Silicon
to Developer Tools, Keynote Speech. In DVCon Europe.

[12] Manjula Peiris and James H Hill. 2016. Automatically Detecting Excessive Dy-
namic Memory Allocations Software Performance Anti-Pattern. In Proceedings of
the 7th ACM/SPEC on International Conference on Performance Engineering. ACM,
237–248.

[13] Laurence Pierre and Luca Ferro. 2008. A tractable and fast method for monitoring
SystemC TLM specifications. IEEE Trans. Comput. 57, 10 (2008), 1346–1356.

[14] Connie U Smith and Lloyd G Williams. 2000. Software performance antipatterns..
In Workshop on Software and Performance, Vol. 17. Ottawa, Canada, 127–136.

